• Title/Summary/Keyword: trans ZSI

Search Result 5, Processing Time 0.021 seconds

Characteristics of Transient State and Stress of Three-Phase Switched Trans Z-Source DC/AC Power Converter (3상 Switched Trans Z-소스 직류/교류 전력변환기의 스트레스 및 과도상태 특성)

  • Lim, Young-Cheol;Kim, Se-Jin;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.57-66
    • /
    • 2012
  • When typical Z-source DC/AC inverter(ZSI) is operated in high voltage gain area, because of its high duty ratio, voltage and current stress in Z-network of typical ZSI are increased. This paper proposes a new switched trans ZSI(STZSI) with two switched trans cells which consist of one trans and two diodes. To confirm the operation performance of the proposed system, the PSIM simulation is performed for typical ZSI, switched inductor ZSI and the proposed STZSI. Voltage / current stress and transient state characteristics of each method are compared under the condition of DC input voltage 100[V] and output phase voltage 66[Vrms]. As a result, we confirmed that transient state of the proposed STZSI is short compared with the conventional ZSI because the high voltage gain is obtained using the same duty ratio, also a low duty ratio is required for the same output voltage. Finally, we could know the proposed system have low voltage and current stress in Z-network compared with the conventional ZSI.

Design of Z-network of X-shaped Switched Trans ZSI considering trans magnetizing inductance (변압기의 자화 인덕턴스를 고려한 X자형 스위치드 변압기 ZSI의 Z-네트워크 설계)

  • Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.209-210
    • /
    • 2012
  • 본 연구에서는 종전의 X자형 임피던스 망을 갖는 Z-소스 인버터(X-ZSI)에 비해 부스트 성능을 향상시킨 변압기를 이용한 ZSI(X-STZSI)의 임피던스 망을 설계하였다. 사용된 변압기는 이상적인 변압기에 자화 인덕턴스를 고려한 모델을 이용하였다. 따라서 임피던스 망을 구성하는 변압기의 자화 인덕턴스와 커패시터 용량을 산정하는 방법을 함께 설명하고 PSIM 시뮬레이션을 통해 검증하였다.

  • PDF

A Study on the Output Voltage Characteristic of Switched Trans Z-Source Inverter (스위치드 변압기 Z-소스 인버터의 출력전압 특성에 관한 연구)

  • Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • This paper proposes the switched trans Z-source inverter(STZSI) which combined the characteristics of the trans Z-source inverter(TZSI) and the switched inductor Z-source inverter(SLZSI). The proposed STZSI has the same performance compared with the SLZSI which is improved the voltage boost performance of the conventional typical X-shaped ZSI, and it has advantage that circuit structure of Z-impedance network is more simple. And, in order to step up the voltage boost factor under the condition of the same duty ratio, unlike the SLZSI adding the inductors and diodes, the proposed method is dune by changing the turn ratio of trans primary winding of Z-impedance network. To confirm the validity of the proposed method, PSIM simulation and a DSP(TMS320F28335) based experiment were performed using trans with turn ratio 1 and 2 under the condition of the input DC voltage VI=50V, duty ratio D=0.1 and D=0.15. As a result, under the same input/ouput condition, the inverter arm voltage stress of the proposed method is reduced to about 15%-22% as compared with typical X-shaped ZSI, and the elements in Z-impedance network of the proposed method is reduced as compared with the SLZSI.

A Study on the Output Voltage and Efficiency of the Single-Phase Z-Source Inverters According to Duty Ratio (듀티 비에 따른 단상 Z-소스 인버터의 효율과 출력 전압에 관한 연구)

  • Hong, Seung-Pyo;Jung, Young-Gook;Lim, Young-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.8-19
    • /
    • 2011
  • This paper was compared for the output voltage and efficiency of the single-phase Z-source inverter(ZSI) according to shoot through duty ratio D. The eight single-phase ZSI in this study are typical ZSI, Embedded ZSI(EZSI), Improved ZSI(IZSI), Quasi ZSI(QZSI), Series ZSI, Trans ZSI(TSI), Switched inductor ZSI(SL-ZSI) and Extended boost ZSI (exZSI). The eight ZSI are divided into two Groups. ; Group-1 which is ZSI with the ordinary voltage boost factor B, and Group-2 which is ZSI with the maximum voltage boost factor B. For the execution of the proposed study, the PSIM simulation was achieved under the condition of input DC voltage=150[V] of ZSI, load =30[${\Omega}$] and 60[Hz] output filter. The output voltage and efficiency of each ZSI were calculated within the limits of D=0.1~0.4. As a result, the output peak voltage of Group-2 was suddenly increased in a specified duty ratio D, and its efficiency was rapidly decreased. On the contrary, Group-1 shown the output and efficiency characteristics without sudden change compared to Group-2 despite the duty ratio increase. The efficiency of the Group-2 was sharply declined at duty ratio D of the most output voltage, but, in case of Group-1, the efficiency was slightly declined. Finally, the input DC current of ZSI with DCM and CCM was discussed.

Improved LCCT Z-Source DC-AC Inverter for Ripple Reduction of Input Current and Capacitor Voltage (입력전류와 커패시터 전압의 맥동저감을 위한 개선된 LCCT Z-소스 DC-AC 인버터)

  • Shin, Yeon-Soo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1432-1441
    • /
    • 2012
  • In this study, an improved LCCT(Inductor-Capacitor-Capacitor-Trans) Z-source inverter(Improved LCCT ZSI) with characteristics of Quasi Z-source inverter(QZSI) and LCCT Z-source inverter(LCCT ZSI) is proposed. The proposed inverter can also reduce the voltage stress and input current/capacitor voltage ripples compared with conventional LCCT ZSI and Quasi ZSI. A two winding trans in Z-impedance network of the conventional LCCT ZSI is replaced by a three winding trans in the proposed inverter. To verify the validity of the proposed inverter, a DSP controlled hardware was made and PSIM simulation was executed for each method. Comparing the current and voltage ripples of each method under the condition of input DC voltage 70[V] and output AC voltage 76[Vrms], the input current and capacitor voltage ripple factors of the proposed inverter were low as 11[%] and 1.4[%] respectively. And, for generation of the same output AC voltage of each method, voltage stress of the proposed inverter was low as 175[V] under the condition of duty ratio D=0.15. As mentioned above, we could know that the proposed inverter have the characteristics of low voltage stress, low ripple factor and low operation duty ratio compared with the conventional methods. Finally, the efficiency according to load change/duty ratio and the transient state characteristics were discussed.