• Title/Summary/Keyword: trajectory operation

Search Result 182, Processing Time 0.024 seconds

A nonlinear controller based on saturation functions with variable parameters to stabilize an AUV

  • Campos, E.;Monroy, J.;Abundis, H.;Chemori, A.;Creuze, V.;Torres, J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.211-224
    • /
    • 2019
  • This paper deals with a nonlinear controller based on saturation functions with variable parameters for set-point regulation and trajectory tracking control of an Autonomous Underwater Vehicle (AUV). In many cases, saturation functions with constant parameters are used to limit the input signals generated by a classical PD (Proportional-Derivative) controller to avoid damaging the actuators; however this abrupt bounded harms the performance of the controller. We, therefore, propose to replace the conventional saturation function, with constant parameters, by a saturation function with variable parameters to limit the signals of a PD controller, which is the base of the nonlinear PD with gravitational/buoyancy compensation and the nonlinear PD + controllers that we propose in this paper. Consequently, the mathematical model is obtained, considering the featuring operation of the underwater vehicle LIRMIA 2, to do the stability analysis of the closed-loop system with the proposed nonlinear controllers using the Lyapunov arguments. The experimental results show the performance of an AUV (LIRMIA 2) for the depth control problems in the case of set-point regulation and trajectory tracking control.

A correction of synthetic aperture sonar image using the redundant phase center technique and phase gradient autofocus (Redundant phase center 기법과 phase gradient autofocus를 이용한 합성개구소나 영상 보정)

  • Ryue, Jungsoo;Baik, Kyungmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.546-554
    • /
    • 2021
  • In the signal processing of synthetic aperture sonar, it is subject that the platform in which the sensor array is installed moves along the straight line path. In practical operation in underwater, however, the sensor platform will have trajectory disturbances, diverting from the line path. It causes phase errors in measured signals and then produces deteriorated SAS images. In this study, in order to develop towed SAS, as tools to remove the phase errors associated with the trajectory disturbances of the towfish, motion compensation technique using Redundant Phase Center (RPC) and also Phase Gradient Autofocus (PGA) method is investigated. The performances of these two approaches are examined by means of a simulation for SAS system having a sway disturbance.

Characteristics of Meteorological Parameters and Ionic Components in PM2.5 during Asian Dust Events on November 28 and 30, 2018 at Busan (부산지역 2018년 11월 28일과 11월 30일 황사 발생 시의 기상과 PM2.5 중의 이온성분 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.31 no.6
    • /
    • pp.515-524
    • /
    • 2022
  • This study investigated characteristics of meteorological parameters and ionic components of PM2.5 during Asian dust events on November 28 and 30, 2018 at Busan, Korea. The seasonal occurrence frequencies of Asian dust during 1960~2019 (60 years) were 81.7% in spring, 12.2% in winter, and 6.1% in autumn. Recently, autumn Asian dust occurrence in Busan has shown an increasing trend. The result of AWS (automatic weather station), surface weather chart, and backward trajectory analyses showed that the first Asian dust of Nov. 28, 2018, in Busan came with rapid speed through inner China and Bohai Bay from Mongolia. The second Asian dust of Nov. 30, 2018, in Busan seems to have resulted from advection and deposition of proximal residual materials. These results indicated that understanding the characteristics of meteorological parameters and ionic components of PM2.5 during Asian dust events could provide insights into establishing a control strategy for urban air quality.

The effect of ionizing radiation on robotic trajectory movement and electronic components

  • Sofia Coloma;Paul Espinosa Peralta;Violeta Redondo;Alejandro Morono;Rafael Vila;Manuel Ferre
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4191-4203
    • /
    • 2023
  • Robotics applications are greatly needed in hazardous locations, e.g., fusion and fission reactors, where robots must perform delicate and complex tasks under ionizing radiation conditions. The drawback is that some robotic parts, such as active electronics, are susceptible to radiation. It can lead to unexpected failures and early termination of the robotic operation. This paper analyses the ionizing radiation effect from 0.09 to 1.5 Gy/s in robotic components (microcontrollers, servo motors and temperature sensors). The first experiment compares the performance of various microcontroller types and their actuators and sensors, where different mitigation strategies are applied, such as using Radiation-Hardened (Rad-Hard) microcontrollers or shielding. The second and third experiments analyze the performance of a 3-Degrees of Freedom (DoF) robotic arm, evaluating its components' responses and trajectory. This study enhances our understanding and expands our knowledge regarding radiation's impact on robotic arms and components, which is useful for defining the best strategies for extending the robots' operational lifespan, especially when performing maintenance or inspection tasks in radiation environments.

Analysis of Tropospheric Carbon Monoxide and Ozone Production in East Asia

  • Lee S. H.;Choi G. H.;Lim H. S.;Lee J. H.;Seo D.C.;Jun J. N.;Jung J. H.;Kim I. S.;Kim J.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.182-183
    • /
    • 2004
  • Atmospheric carbon monoxide (CO) and ozone $(O_3)$ play the important trace gases in tropospheric chemistry, through its concentration in the troposphere directly influences the concentrations of tropospheric hydroxyl (OH). Understanding the impact of CO and $O_3$ on the global tropospheric chemistry requires measurements of the global atmospheric CO and $O_3$ distributions. This study focuses on the identification of CO and O3 released in the East Asia between March 2000 and February 2004. During the period, the MOPITT instrument onboard the Earth Observing System (EOS)-Terra platform collected extensive measurement of CO. So we have used MOPITT data at 700hPa to analyze seasonal distribution of CO concentration. And the O3 measurements for this study were Total Ozone Mapping Spectrometer (TOMS) and Dobson spectrometer provided NASA/GSFC and Yonsei University, Korea. During springtime, the CO and O3 concentrations were increased over East Asia for April, May, and June. CO and O3 transport and chemistry in the springtime in East Asia are studied by use of the HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model.

  • PDF

Performance Evaluation of an Integrated Starter-Alternator with an IPM Synchronous Machine under Sensor-less Operation

  • Xu, Zhuang;Rahman, M.F.;Wang, G.;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • This paper presents performance evaluation of an Integrated Starter-Alternator (ISA) prototype with an Interior Permanent Magnet (IPM) synchronous machine under sensor-less operation. To attain a high starting torque at zero speed and in subsequent extremely low speed range, a hybrid signal injection method is proposed. At higher speed, an improved stator flux observer is used for the stator flux estimation. This observer is able to produce accurately-estimated stator flux linkage for high performance Direct Torque and Flux Control (DTFC) implementation. The sensor-less DTFC IPM synchronous machine drive takes full advantage of the capacity of the power converter and fulfills the control specifications for the ISA. The trajectory control algorithm responds rapidly and in a well behaved manner over a wide range of operating conditions. The experimental results verify the feasibility and advantages of the system.

Fine Seek Control of Extended Applicable Range for Optical Disk Drives

  • Ryoo, Jung-Rae;Jin, Kyoung-Bog;Doh, Tae-Young;Chung, Myung-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.146-151
    • /
    • 2001
  • Optical disk drive has excellent advantage of random accessibility of which performance is measured by access time. However, due to the increased rotational velocity of the disk and constraints of mechanical structure, two-stage seek algorithm which executes coarse and fine seeks sequentially has been adopted in most commercial optical disk drives. Although the laser spot is moved to a target track by a single seek operation, the limited operation range of the fine actuator restricts the application of the fine seek algorithm below a few hundreds of tracks. Especially, excessive movement of the objective lens causes a failure in generation of track-cross pulse and results in an unstable seek operation. In this paper, a new control algorithm for extending the fine seek range is proposed with an appropriate control structure. The coarse actuator is utilized to reduce the misalignment between the objective lens and the laser beam axis, and the fine actuator is controlled to follow the reference velocity trajectory. The proposed algorithm is applied to a CD-ROM drive to show its feasibility and some experimental results are presented.

  • PDF

Gait Implementation of a Biped Robot with Smooth Walking Pattern (유연한 보행 형태를 갖는 이족보행로봇의 걸음새 구현)

  • No, Gyeong-Gon;Gong, Jeong-Sik;Kim, Jin-Geol;Kim, Gi-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.43-50
    • /
    • 2002
  • This paper presents the new gait implementation of a biped robot with smooth walking using 3-dimensional continuous trunk motion and kick action of ankle joints. Trajectory generation ova trunk is performed not on a unit gait but on a whole walking interval. In applying kick action such as heel-touch or toe-off, varying coordinate system was employed for the simplification of the kinematic analysis. Desired ZMP (zero moment point) is also changed to implement the efficient kick action. As a result, balancing motion of the proposed gait was much more decreased than that of conventional one. Moreover, robot\\`s walking behavior is very smooth, natural and similar to the pace of a human. The walking experiment system is composed of eight AC servo motors and a DSP controller. The walking simulation and the experimental results are shown using the proposed new walking algorithm.

Introduction to Chang'e-3 and Analysis of Estimated Mission Trajectory (창어 3호 개요 및 임무궤적 추정결과 분석)

  • Choi, Su-Jin;Lee, Donghun;Bae, Jonghee;Rew, Dong-Young;Ju, Gwanghyeok;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.984-997
    • /
    • 2015
  • Chang'e-3 consisting of a lunar lander and exploration rover was launched on December 1, 2013 aboard a Long March 3B rocket flying from Xichang space launch center. Chang'e-3 was inserted into the lunar orbit after about a 5-day transit to the Moon and landed on the targeted landing site after orbiting around the Moon for 8 days. The successful landing of the Chang'e-3 gives a lot of help to analyze the future needs of the subsystem technologies and to figure out the trajectory from launch to lunar landing as well as operation sequences in the development of Korean lunar exploration is scheduled. Therefore, the configuration and analysis of overall mission of Chang'e-3 is performed based on the public information from the press and website. As a result, overall mission trajectory is reconstructed by solving boundary condition and then estimating control variable. Visibility status and eclipse status also analyzes so communication and power charge condition is as good as to operate lunar lander. Mass budget of the lander is derived using ${\Delta}V$ according to specific impulse.

A Study of Flare Operation Method for The Fighter with An External Center Fuel Tank (동체 중앙에 연료탱크를 장착한 전투기의 섬광탄 운용 방안 연구)

  • Kang, Chi-Hang;Jang, Young-Il;Kwon, Ky-Beom;Yoon, Young-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.616-622
    • /
    • 2012
  • In this paper, we examined the problems of the flare operation of tactic maneuvering flight of fighter aircraft with 150GL center external fuel tank and proposed the possible solution of it's operation. The damage scope of horizontal fin of fuel tank and flare trajectory when the flare ejected from the maneuvering aircraft were analyzed by the wind tunnel test and the numerical analysis. We investigated the two different option to avoid the damage of fin; i) the adjustment of flare dispenser angle and ii) the change of horizontal fin's shape. For the considering of practical operation of present system, we chose the second option. We estimated the drop safety of external fuel tank with redesigned fin by the wind tunnel experiments.