• 제목/요약/키워드: trajectory control experiment

검색결과 86건 처리시간 0.028초

An inverse dynamic trajectory planning for the end-point tracking control of a flexible manipulator

  • Kwon, Dong-Soo;Babcock, Scott-M.;Book, Wayne-J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.599-606
    • /
    • 1992
  • A manipulator system that needs significantly large workspace volume and high payload capacity has greater link flexibility than typical industrial robots and teleoperators. If link flexibility is significant, position control of the manipulator's end-effector exhibits the nonminimum phase, noncollocated, and flexible structure system control problems. This paper addresses inverse dynamic trajectory planning issues of a flexible manipulator. The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, the inverse dynamic method calculates the feedforward torque and the trajectories of all state variables that do not excite structural vibrations for a given end-point trajectory. Through simulation and experiment with a single-Unk flexible manipulator, the effectiveness of the inverse dynamic method has been demonstrated.

  • PDF

아이폰 기반의 이동로봇 시뮬레이터 개발 (Development of a Simulator for a Mobile Robot Based on iPhone)

  • 김동헌
    • 한국지능시스템학회논문지
    • /
    • 제23권1호
    • /
    • pp.29-34
    • /
    • 2013
  • 본 논문은 애드혹 통신을 기반으로 아이폰의 가속도 센서를 사용하여 이동로봇을 무선 제어하는 연구에 대하여 다룬다. 이동로봇을 아이폰으로 무선제어하기 위한 방법으로 사용자 원격제어와 자율제어 방법이 제안되었다. 궤적 추종제어 알고리즘의 효율성을 평가하기 위하여 아이폰의 인터페이스를 기반으로 모니터에 그려진 궤적을 가상로봇이 추종하는 시뮬레이터를 개발하였다. 제안된 시뮬레이터에서는 궤적 추종제어를 위해 이동로봇을 제어할 때 컴퓨터에서 해당 알고리즘을 이용하여 미리 시뮬레이션이 가능하며 사용자에 의한 원격제어와의 결과 비교도 보여준다. 연구의 결과로 제안된 시뮬레이터가 이동로봇에 자율이동제어 방법을 사용할 때, 자율추종 알고리즘의 적합성과 효율성을 미리 검사 하는데 사용될 수 있음을 보여준다.

High-Precision Contour Control by Gaussian Neural Network Controller for Industrial Articulated Robot Arm with Uncertainties

  • Zhang, Tao;Nakamura, Masatoshi
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.272-282
    • /
    • 2001
  • Uncertainties are the main reasons of deterioration of contour control of industrial articulated robot arm. In this paper, a high-precision contour control method was proposed to overcome some main uncertainties, such as torque saturation, system delay dynamics, interference between robot links, friction, and so on. Firstly, each considered factor of uncertainties was introduced briefly. Then proper realizable objective trajectory generation was presented to avoid torque saturation from objective trajectory. According to the model of industrial articulated robot arm, construction of Gaussian neural network controller with considering system delay dynamic, interference between robot links and friction was explained in detail. Finally, through the experiment and simulation, the effectiveness of proposed method was verified. Furthermore, based on the results it was shown that the Gaussian neural network controller can be also adapted for the various kinds of friction and high-speed motion of industrial articulated robot arm.

  • PDF

공압 서보실린더의 신경회로망 결합형 적응제어 (Adaptive Control Incorporating Neural Network for a Pneumatic Servo Cylinder)

  • 장윤성;조승호
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.88-95
    • /
    • 2005
  • This paper presents a design scheme of model reference adaptive control incorporating a Neural Network for a pneumatic servo system. The parameters of discrete-time model of plant are estimated by using the recursive least square method. Neural Network is utilized in order to compensate the nonlinear nature of plant such as compressibility of air and frictions present in cylinder. The experiment of a trajectory tracking control using the proposed control scheme has been performed and its effectiveness has been proved by comparing with the results of a model reference adaptive control.

Robust Minimum-Time Control with Coarse/Fine Dual-Stage Mechanism

  • Kwon, Sang-Joo;Cheong, Joo-No
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1834-1847
    • /
    • 2006
  • A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-stage servo design. Rather than conventional switching type sub-optimal controls, it is a reference following control approach where the predetermined minimum-time trajectory (MTT) is tracked by the perturbation compensator based feedback controller. First, the minimum-time trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve robust tracking performance in spite of model uncertainty and external disturbance is suggested. The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion controller to actively regulate the relative motion between the two stages is formulated. The performance of RMTC is validated through simulation and experiment.

이족 보행로봇의 동적 보행 제어에 관한 연구 (A Study on Dynamic Walking Control of Biped Robot)

  • 심병균;정양근;심현석;이우송
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.245-254
    • /
    • 2014
  • In this paper, stable and robust dynamic walking for a biped motion is proposed. To success this objective, the following structures are processed. In this paper, the proposed control method is one that adjusts actual zero moment position to move to the closest possible point in the stable area instead of following desired zero moment position. This minimizes energy consumption with the smallest joint movements. The proposed control method makes mechanical energy that drives lower limb of the bipedal robot efficient. In this paper, walking experiment is carried out with the three control structures mentioned above. The trajectory generated by off-line is illustrated by performing to walking on flat ground. experiment with an obstacle whose height is lower than that of trajectory is executed to validate dynamic motion.

A solution of inverse kinematics for manipulator by self organizing neural networks

  • Takemori, Fumiaki;Tatsuchi, Yasuhisa;Okuyama, Yoshifumi;Kanabolat, Ahmet
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.65-68
    • /
    • 1995
  • This paper describes trajectory generation of a riobot arm by self-organizing neural networks. These neural networks are based on competitive learning without a teacher and this algorithm which is suitable for problems in which solutions as teaching signal cannot be defined-e.g. inverse dynamics analysis-is adopted to the trajectory generation problem of a robot arm. Utility of unsupervised learning algorithm is confirmed by applying the approximated solution of each joint calculated through learning to an actual robot arm in giving the experiment of tracking for reference trajectory.

  • PDF

전기-유압서보에 의한 자동유압굴삭기의 개발에 관한 연구(1) -가변구조에 의한 궤도추종제어 시뮬레이션- (A study on the development of Electro-hydraulic servo Excavator(1) -Simulation of the trajectory tracking control using VSS-)

  • 허준영;하석홍;이진걸
    • 한국정밀공학회지
    • /
    • 제6권2호
    • /
    • pp.65-76
    • /
    • 1989
  • The objective of this paper is to design the variable structure system(VSS) controller for the tracking control of excavator which is driven by electro-hydraulic servomechansim. It is generally agreed that the dynamic characteristics of the robot arm such as excavator are coupled, time varying, and highly nonlinear, and also hydraulic system contains nonlinear characteristics in itself, so performing exact position control and trajectory tracking control need remarkable consideration. To solve this porblem, this system was designed as a variable structure system. The salient feature of VSS is that the sliding mode occur on a switching surface. While in sliding mode, the system remains insensitive to parameter variations and disturbances. This control algorithm was applied to a hydraulic excavator by simulaltion and to a simulator by experiment. And its effectiveness was verified. And the results of VSS for the electro-hydraulic excavator was compared with that of the PID when load disturbances and system parameter variations exist.

  • PDF

신경회로망을 이용한 공압서보 XY-플로터의 운동제어 (Motion Control of a Pneumatic Servo XY-Plotter using Neural Network)

  • 황운규;조승호
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.603-609
    • /
    • 2004
  • This paper deals with the issue of Neural Network-based control for a rodless pneumatic cylinder system which is utilized for a pneumatic XY-plotter. In order to identify the system design parameters, the open loop response of a pneumatic rodless cylinder controlled by a pneumatic servovalve is investigated by applying a self-excited oscillation method. Based on the system design parameters, the PD feedback compensator is designed and then Neural Network is incorporated with it. The experiment of a trajectory tracking control using a PD-NN has been performed and proved its excellent performance by comparing with that of a PD feedback compensator.