• Title/Summary/Keyword: training normalization

Search Result 90, Processing Time 0.069 seconds

KPX's EMS Network Analysis Operation Status in Korea Power System (KPX의 한국 전력 계통에서 EMS 계통해석기능 활용실태 소개)

  • Kang, Hyung-Koo;Han, Hee-Cheon
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.30-34
    • /
    • 2005
  • Due to old Toshiba EMS's database size limit and hardware old aging, KPX(Korea Power Exchange) had introduced New EMS from AREVA(old ALSTOM) in July 2002. After then KPX had committed many man power and time to normalize EMS NA(Network Analysis) functions for using real power system. At initial stage, to normalize State Estimator which is the backbone of all other NA functions and DTS(Dispatcher Training Simulator}, KPX had corrected numerous topology errors, network model errors, non-scanned and wrongly scanned SCADA measured errors. After SE function study, running test and tuning, State Estimator could finally have been run properly and stably from June 2003. Based on SE running, KPX had normalized real time Contingency Analysis, and study mode Power Flow, STNET and DTS. From early 2004, dispatchers have been trained to use NA and DTS for the purpose of stable SE running, NA operation & results reading and urgent equipment outage reviewing. EMS NA have been greatly contributed to operate real time power system stably. Above NA normal operation by KPX own efforts under the no experience of NA running, KPX made a good precedent. This paper is intended to introduce EMS NA normalization process, operation status, and etc in Korea power system operation.

  • PDF

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

In Out-of Vocabulary Rejection Algorithm by Measure of Normalized improvement using Optimization of Gaussian Model Confidence (미등록어 거절 알고리즘에서 가우시안 모델 최적화를 이용한 신뢰도 정규화 향상)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.125-132
    • /
    • 2010
  • In vocabulary recognition has unseen tri-phone appeared when recognition training. This system has not been created beginning estimation figure of model parameter. It's bad points could not be created that model for phoneme data. Therefore it's could not be secured accuracy of Gaussian model. To improve suggested Gaussian model to optimized method of model parameter using probability distribution. To improved of confidence that Gaussian model to optimized of probability distribution to offer by accuracy and to support searching of phoneme data. This paper suggested system performance comparison as a result of recognition improve represent 1.7% by out-of vocabulary rejection algorithm using normalization confidence.

Deep Learning Based Gray Image Generation from 3D LiDAR Reflection Intensity (딥러닝 기반 3차원 라이다의 반사율 세기 신호를 이용한 흑백 영상 생성 기법)

  • Kim, Hyun-Koo;Yoo, Kook-Yeol;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose a method of generating a 2D gray image from LiDAR 3D reflection intensity. The proposed method uses the Fully Convolutional Network (FCN) to generate the gray image from 2D reflection intensity which is projected from LiDAR 3D intensity. Both encoder and decoder of FCN are configured with several convolution blocks in the symmetric fashion. Each convolution block consists of a convolution layer with $3{\times}3$ filter, batch normalization layer and activation function. The performance of the proposed method architecture is empirically evaluated by varying depths of convolution blocks. The well-known KITTI data set for various scenarios is used for training and performance evaluation. The simulation results show that the proposed method produces the improvements of 8.56 dB in peak signal-to-noise ratio and 0.33 in structural similarity index measure compared with conventional interpolation methods such as inverse distance weighted and nearest neighbor. The proposed method can be possibly used as an assistance tool in the night-time driving system for autonomous vehicles.

A Realtime Road Weather Recognition Method Using Support Vector Machine (Support Vector Machine을 이용한 실시간 도로기상 검지 방법)

  • Seo, Min-ho;Youk, Dong-bin;Park, Sae-rom;Jun, Jin-ho;Park, Jung-hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1025-1032
    • /
    • 2020
  • In this paper, we propose a method to classify road weather conditions into rain, fog, and sun using a SVM (Support Vector Machine) classifier after extracting weather features from images acquired in real time using an optical sensor installed on a roadside post. A multi-dimensional weather feature vector consisting of factors such as image sharpeness, image entropy, Michelson contrast, MSCN (Mean Subtraction and Contrast Normalization), dark channel prior, image colorfulness, and local binary pattern as global features of weather-related images was extracted from road images, and then a road weather classifier was created by performing machine learning on 700 sun images, 2,000 rain images, and 1,000 fog images. Finally, the classification performance was tested for 140 sun images, 510 rain images, and 240 fog images. Overall classification performance is assessed to be applicable in real road services and can be enhanced further with optimization along with year-round data collection and training.

Modulation Recognition of BPSK/QPSK Signals based on Features in the Graph Domain

  • Yang, Li;Hu, Guobing;Xu, Xiaoyang;Zhao, Pinjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3761-3779
    • /
    • 2022
  • The performance of existing recognition algorithms for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is proposed in this study. First, the power spectrum of the squared candidate signal is truncated by a rectangular window. Thereafter, the graph representation of the truncated spectrum is obtained via normalization, quantization, and edge construction. Based on the analysis of the connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, we prove that the SD is a Schur-concave function with respect to the probability vector of the vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition performance under low SNRs and computational complexity. As it is confirmed that the proposed method reduces the computational complexity of existing graph-based algorithms, it can be applied in modulation recognition of radar or communication signals in real-time processing, and does not require any prior knowledge about the training sets, channel coefficients, or noise power.

The Effect of regularization and identity mapping on the performance of activation functions (정규화 및 항등사상이 활성함수 성능에 미치는 영향)

  • Ryu, Seo-Hyeon;Yoon, Jae-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.75-80
    • /
    • 2017
  • In this paper, we describe the effect of the regularization method and the network with identity mapping on the performance of the activation functions in deep convolutional neural networks. The activation functions act as nonlinear transformation. In early convolutional neural networks, a sigmoid function was used. To overcome the problem of the existing activation functions such as gradient vanishing, various activation functions were developed such as ReLU, Leaky ReLU, parametric ReLU, and ELU. To solve the overfitting problem, regularization methods such as dropout and batch normalization were developed on the sidelines of the activation functions. Additionally, data augmentation is usually applied to deep learning to avoid overfitting. The activation functions mentioned above have different characteristics, but the new regularization method and the network with identity mapping were validated only using ReLU. Therefore, we have experimentally shown the effect of the regularization method and the network with identity mapping on the performance of the activation functions. Through this analysis, we have presented the tendency of the performance of activation functions according to regularization and identity mapping. These results will reduce the number of training trials to find the best activation function.

Real-Time Face Recognition Based on Subspace and LVQ Classifier (부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식)

  • Kwon, Oh-Ryun;Min, Kyong-Pil;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.19-32
    • /
    • 2007
  • This paper present a new face recognition method based on LVQ neural net to construct a real time face recognition system. The previous researches which used PCA, LDA combined neural net usually need much time in training neural net. The supervised LVQ neural net needs much less time in training and can maximize the separability between the classes. In this paper, the proposed method transforms the input face image by PCA and LDA sequentially into low-dimension feature vectors and recognizes the face through LVQ neural net. In order to make the system robust to external light variation, light compensation is performed on the detected face by max-min normalization method as preprocessing. PCA and LDA transformations are applied to the normalized face image to produce low-level feature vectors of the image. In order to determine the initial centers of LVQ and speed up the convergency of the LVQ neural net, the K-Means clustering algorithm is adopted. Subsequently, the class representative vectors can be produced by LVQ2 training using initial center vectors. The face recognition is achieved by using the euclidean distance measure between the center vector of classes and the feature vector of input image. From the experiments, we can prove that the proposed method is more effective in the recognition ratio for the cases of still images from ORL database and sequential images rather than using conventional PCA of a hybrid method with PCA and LDA.

  • PDF

A Single-End-Point DTW Algorithm for Keyword Spotting (핵심어 검출을 위한 단일 끝점 DTW알고리즘)

  • 최용선;오상훈;이수영
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.209-219
    • /
    • 2004
  • In order to implement a real time hardware for keyword spotting, we propose a Single-End-Point DTW(SEP-DTW) algorithm which is simple and less complex for computation. The SEP-DTW algorithm only needs a single end point which enables efficient applications, and it has a small wont of computations because the global search area is divided into successive local search areas. Also, we adopt new local constraints and a new distance measure for a better performance of the SEP-DTW algorithm. Besides, we make a normalization of feature same vectors so that they have the same variance in each frequency bin, and each frame has the same energy levels. To construct several reference patterns for each keyword, we use a clustering algorithm for all training patterns, and mean vectors in every cluster are taken as reference patterns. In order to detect a key word for input streams of speech, we measure the distances between reference patterns and input pattern, and we make a decision whether the distances are smaller than a pre-defined threshold value. With isolated speech recognition and keyword spotting experiments, we verify that the proposed algorithm has a better performance than other methods.

Higher Order Spectral Analysis of Non-linear Pitching Motion (고차스펙트럼을 이용한 선체 종동요의 비선형적 거동에 관한 해석)

  • Kang, Byung-Ho;Carlos, Miguel Mejia;Kim, Tae-Ho;Park, Jun-Mo;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The estimation of non-linear ship motion is one of the most important issues in recent studies of ship stability. In this paper, bispectral analysis and bicoherence analysis were introduced in order to analyze the non-linear ship motion. In addition to the previously observed non-linear pitching motion in following seas, this study observed the non-linear phase coupling of pitching motion in following & quartering seas, and starboard beam seas. By comparing phase coupling between each frequency quantitatively via the bicoherence analysis, it was confirmed that non-linear phase coupling was much stronger in frequency regions other than the peak frequencies of a power spectrum. Furthermore, it was found out that the results of bicoherence calculation were analagous to each other, although the different normalization methods were applied.