• Title/Summary/Keyword: train frame

Search Result 115, Processing Time 0.03 seconds

Characteristic analysis on train-induced vibration responses of rigid-frame RC viaducts

  • Sun, Liangming;He, Xingwen;Hayashikawa, Toshiro;Xie, Weiping
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1015-1035
    • /
    • 2015
  • A three-dimensional (3D) numerical analysis for the train-bridge interaction (TBI) system is actively developed in this study in order to investigate the vibration characteristics of rigid-frame reinforced concrete (RC) viaducts in both vertical and lateral directions respectively induced by running high-speed trains. An analytical model of the TBI system is established, in which the high-speed train is described by multi-DOFs vibration system and the rigid-frame RC viaduct is modeled with 3D beam elements. The simulated track irregularities are taken as system excitations. The numerical analytical algorithm is established based on the coupled vibration equations of the TBI system and verified through the detailed comparative study between the computation and testing. The vibration responses of the viaducts such as accelerations, displacements, reaction forces of pier bottoms as well as their amplitudes with train speeds are calculated in detail for both vertical and lateral directions, respectively. The frequency characteristics are further clarified through Fourier spectral analysis and 1/3 octave band spectral analysis. This study is intended to provide not only a simulation approach and evaluation tool for the train-induced vibrations upon the rigid-frame RC viaducts, but also instructive information on the vibration mitigation of the high-speed railway.

Evaluation of the Structural Integrity of a Sandwich Composite Train Roof Structure (샌드위치 복합재 철도차량 루프구조물의 구조안전성 평가)

  • Shin Kwang-Bok;Ryu Bong-Jo;Lee Jea-Youl;Lee Sang-Jin;Jo Se-Huen
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.338-343
    • /
    • 2005
  • We have evaluated the structural integrity of a sandwich composite train roof which can find a lightweight, cost saving solution to large structural components for rail vehicles in design stages. The sandwich composite train roof was 11.45 meter long and 1.76 meter wide. The reinforced frame was inserted in sandwich panels to improve the structural performance of train roof structure and had the shape of hollow rectangular box. The finite-element analysis was used to calculate the stresses, deflections and natural frequencies of the sandwich composite train roof against the weight of air-condition system. The 3D sandwich FE model was introduced to simulate the hollow aluminum frames which jointed to both sides of the sandwich train roof. The results shown that the structural performance of a sandwich composite train roof under load conditions specified was proven and the use of aluminum reinforced frame was beneficial with regard to weight savings in comparison to steel reinforced frame.

  • PDF

Evaluation of Fatigue Strength for Bogie Frame of a Tilting Train (틸팅차량용 대차프레임의 피로강도 평가)

  • Park, Byung-Hwa;Kim, Nam-Po;Kim, Jung-Seok;Lee, Kang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.130-135
    • /
    • 2004
  • The fatigue strength analysis is performed for the bogie frame of Korean tilting train which is newly developed. The loading conditions imposed on the bogie frame during carbody tilting are derived in addition to the loadings based on the JIS E4207 standard. The tilting bogie frame is modeled for the finite element analysis and fatigue analysis is carried out under Goodman equation. It is concluded the bogie frame of the developed tilting train has enough structural safety.

  • PDF

Fatigue Strength Investigation of Bogie Frame for the Tilting Train under DIC standard (UIC기준에 근거한 틸팅 대차프레임의 피로강도평가)

  • Kim Jung-Seok;Kim Nam-Po;Park Byung-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.589-594
    • /
    • 2004
  • This paper has evaluated the fatigue strength of a tilting bogie frame for the Korean tilting train. We have established the loading combinations for the tilting bogie frame based on the UIC standard because there are no standards for the tilting train. For this study, we have derived 31 load cases to consider tilting effect. Then, we have performed the static and fatigue analysis. From this study, we can make sure the safety of the tilting bogie.

  • PDF

Experimental and Analytical Study on Fatigue Strength Evaluation for the Bogie Frame of Tilting Railway Vehicles (틸팅열차용 주행장치 프레임에 대한 피로강도평가를 위한 해석 및 시험적 연구)

  • Kim Jung-Seok;Kim Nam-Po;Ko Tae-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.97-104
    • /
    • 2006
  • This paper has investigated the strength of the bogie frame for the Korean tilting train that is being developed in KRRI. In this study, the loading conditions imposed on the bogie frame of tilting train were derived and the static and fatigue strength of the bogie frame has been evaluated. In order to achieve these goals, finite element analysis has been performed and the stress concentration areas were investigated. Based on the analytical results, the static load tests were conducted under the nontilting load conditions and the tilting load conditions. The test results were used to evaluate the fatigue strength of the bogie frame by Goodman diagram.

Static and Fatigue Analysis of Bogie Rotating Frame for Light Rail Train (경량전철 대차 선회프레임의 정적강도와 피로특성 분석)

  • 구정서;조현직;송달호
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.253-260
    • /
    • 2001
  • Rotating bogie frame will be used in the bogie for the Light Rail Train being developed. In development of the bogie, analyzed were the structural strength and fatigue characteristics of the rotating bogie frame. Defined load cases were applied for the analysis. No part of the rotating bogie frame is subjected to stress beyond the fatigue endurance limits of the material used when grinding the weldment of the lower plate link bend. It is concluded that the rotating bogie frame is considered safe in the view of the structural strength.

  • PDF

An Analytical Study on Fatigue Strength Evaluation Procedure for the Bogie Frame of Tilting Railway Vehicle (틸팅대차 프레임에 대한 피로강도평가 절차에 관한 해석적 연구)

  • Kim Nam-Po;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.321-329
    • /
    • 2005
  • This paper has established the strength evaluation procedure of the bogie frame for the Korean tilting train that is being developed in KRRI, In order to establish the strength evaluation procedure, firstly, the loading conditions imposed on the tilting train were investigated. In addition, the static and fatigue strength of the bogie frame has been evaluated. In order to derive the dynamic loads according to the carbody tilting, the load redistribution effect by carbody tilting, the unbalanced lateral acceleration effect by high-speed curving and the tilting actuator force effect have been considered. Multi-body dynamic analyses have been carried out to evaluate the tilting load cases and the strength analysis has been performed by finite element analyses. From this study, the structural safety of the bogie frame could be ensured.

RCV bogie frame structure safety evaluation according to UIC Code (국제 철도 연맹 규정(UIC Code)에 따른 RCV 대차 프레임 구조 안전성 평가)

  • Sang Cheol Rho;Ji Hyeong Park;Shin You Kang
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.7-13
    • /
    • 2023
  • Nowadays, traffic congestion is emerging as a major problem due to the rapid population growth and the increase in automobiles. The train is a convenient means of transportation that can efficiently solve these problems. Trains have been developed in line with human aspirations for a long time, but research on safety is still insufficient. This study aims to check safety by conducting static tests and fatigue tests on bogie frames, and to help develop bogie frames in the future. For the static test, a strain gauge was attached to the point where the local stress concentration was expected beforehand, and the result value was derived, compared with existing theories, and expressed as a Goodman diagram. In the fatigue test, a total of 10 million loads were applied over three stages, and no cracks appeared in the non-destructive test conducted after each stage. Both tests were conducted according to the strict test method of the bogie frame presented by the UIC Code. It satisfied both fatigue life and strength evaluation criteria and was judged to be a bogie frame usable for safe train production.

A Study on Crashworthiness for Motorized Trailer of High Speed Train (고속전철 동력객차에 대한 충돌특성 연구)

  • Kim, Heon-Youog;Han, Jae-Hyung;Lee, Jong-Keun
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.1
    • /
    • pp.16-27
    • /
    • 1999
  • The purpose of this study is to suggest the effective analytical procedure using finite element model for the crashworthiness of motorized trailer of high speed train. The static crush of rectangular section frame is analyzed by experiment and numerical simulation. The equivalent thickness distribution of the aluminum frame ensuring the same energy absorption as the steel frame is obtained. In the analysis of end-on collision of TGV-K, deformed pattern and section forces are obtained, and the effect of crushable zone are examined. The numerical results are applied to the design of motorized trailer of Korean high speed train.

  • PDF

A Experimental Study for Health Monitoring of Bogie Frame for Next Generation High-Speed Train (차세대 고속열차용 대차프레임의 건전성 모니터링을 위한 실험적 연구)

  • Ko, Jae-Ha;Kim, Sang-Soo;Choi, Sung-Hoon;Kim, Seog-Won;Chun, Heoung-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2684-2690
    • /
    • 2011
  • The bogie is one of the most important components in a railway vehicle. So a lot of study has been carried out for safety and reliability of the bogie frame in experimental and simulation. In this paper, Presents an experimental study on health monitoring of next generation high-speed train bogie frame. The ultimate objective of this paper is to estimate the sensor located for health monitoring of bogie. The result from this study might be used essential data in order to construct the next generation high speed train bogie frame health monitoring.

  • PDF