• Title/Summary/Keyword: trailing edge flap

Search Result 45, Processing Time 0.025 seconds

A Study of the Flow Pattern and the PIV Analysis around a Flap Foil (플랩을 갖는 익 주변의 유동 특성과 PIV 해석에 관한 연구)

  • Choi, Hee-Jong;Lee, Gyoung-Woo;Oh, Kyoung-Gun;Jo, Dae-Hwan;Lee, Seung-Keon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • Maneuverability of ships has been receiving a great deal of attention both concerning navigation safety and the prediction of ship maneuvering characteristics, to improve it. high-lift device could be applied to design of rudder at design stage. Now, we carried out the flow visualization and investigation of flow field around a flap rudder(trailing-edge flap). Flow visualization results of flap defection shown as the flow around a NACA0020 Flap Rudder will be conducted in a Circulating Water Channel. The purpose of this investigation will be to investigate the development of the separation region on the flap rudder with the variation of the angle of attack and determine the angle of attack at which the flow separates and reattaches.

  • PDF

Rotor Hub Vibration Reduction Analysis Applying Individual Blade Control (개별 블레이드 조종을 통한 로터 허브 진동 저감 해석)

  • Kim, Taejoo;Wie, Seong-Yong;Kim, Minwoo;Lee, Dong-geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.649-660
    • /
    • 2021
  • Through analytical method based on S-76 model, the level of rotor hub vibration reduction was analyzed according to higher harmonic actuating by individual blade control. The higher harmonic actuating method for individual blades was divided into a method of generating an additional actuating force from the pitch-link in the rotating part and generating actuating force through the active trailing edge flap control of the blade. In the 100kts forward flight conditions, the hub load analysis was performed by changing the phase angle of 15 degree for the 2P/3P/4P/5P harmonic actuation for individual blades. Through the harmonic actuation results, the sensitivity of the rotor system according to the actuating conditions was analyzed, and the T-matrix representing the characteristics of the rotor system was derived based on this analysis result. And through this T-matrix, optimal higher harmonic actuating condition was derived to minimize hub vibration level for flight condition. In addition, the effect on the performance of the rotor system and the pitch-link load under minimum hub vibration condition, as well as the noise influence through the noise analysis were confirmed.

Numerical Study on the Flow Field about Multi-element Airfoils and the Effect of the Lift-enhancing Tabs (다중-익형 주위 유동장 및 양력-향상 탭의 영향에 대한 수치적 연구)

  • Park, Yin-Chul;Chang, Suk;Lee, Deuk-Young;Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.331-336
    • /
    • 2011
  • The flow fields over multi-element airfoils with lift-enhancing flat-plate tabs were numerically investigated. Common choice of the height of the lift-enhancing tabs usually ranges from 0.25% to 1.25% of the reference airfoil chord, and in this study the effect of the position of the tab with l%-chord height was studied by varying the distance of the tab from the trailing edge ranging from 0.5% to 2% of the reference chord. In this paper, the effects of lift-enhancing tabs with various position were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Computed streamlines show that the additional turning caused by the tab reduces the amount of separated flow on the flap.

  • PDF

Aerodynamics of a 2-D Flat-plate Airfoil with Tripwire (2차원 평판날개에서의 Tripwire가 공력에 미치는 영향)

  • Je, Du-Ho;Lee, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.575-581
    • /
    • 2013
  • In this paper, we experimentally investigated the effects of attached cylindrical tripwires on the aerodynamic performance. The research was carried out with a simple two-dimensional (2-D) rectangular airfoil fabricated from thin flat-plate aluminium, with elliptical leading and trailing edges. Tripwires of varying widths and thicknesses, and attack angles of $-5^{\circ}{\sim}20^{\circ}$ were used to investigate the aerodynamic characteristics (e.g. lift and drag forces) of the airfoil. We found that attaching the tripwires to the lower surface of the airfoil enhanced the lift force and increased the lift-to-drag ratio for low attack angles. However, attaching the tripwires to the upper surface tended to have the opposite effects. Moreover, we found that attaching the tripwires to the trailing edge had similar effects as a Gurney flap. The aerodynamic characteristics of the flat-plate airfoil with tripwires can be used to develop passive control devices for aircraft wings in order to increase their aerodynamic performance when gliding at low attack angles.

Design of a morphing flap in a two component airfoil with a droop nose

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.81-91
    • /
    • 2017
  • The performances of lifting surfaces are particularly critical in specific flight conditions like takeoff and landing. Different systems can be used to increase the lift and drag coefficients in such conditions like slat, flap or ailerons. Nevertheless they increase the losses and make difficult the mechanical design of wing structures. Morphing surfaces are a compromise between a right increase in lift and a reduction of parts movements involved in the actuation. Furthermore these systems are suitable for more than one flight condition with low inertia problems. So, flap and slats can be easily substituted by the corresponding morphing shapes. This paper deals with a genetic optimization of an airfoil with morphing flap with an already optimized nose. Indeed, two different codes are used to solve the equations, a finite volume code suitable for structured grids named ZEN and the EulerBoundary Layer Drela's code MSES. First a number of different preliminary design tests were done considering a specific set of design variables in order to restrict the design region. Then a RANS optimization with a single design point related to the take-off flight condition has been carried out in order to refine the previous design. Results are shown using the characteristic curves of the best and of the baseline reported to outline the computed performances enhancements. They reveal how the contemporary use of a morphing acting on the nose of the main component and the trailing edge of the flap drive towards a total not negligible increment in lift.

Flow Visualization and PIV Analysis around a 2-Dimensional Flapped Foil (균일 흐름 중에 놓인 2차원 가변익 주위의 유동가시화 및 PIV 해석)

  • Oh, Kyoung-Gun;Choi, Hee-Jong;Lee, Gyoung-Woo;Choi, Min-Son;Lee, Seung-Keon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2005.05a
    • /
    • pp.62-69
    • /
    • 2005
  • Maneuverability of ships has been receiving a great deal of attention both concerning navigation safety and the prediction of ship maneuvering characteristics, to improve it. High-lift device could be applied to design of rudder at design stage. Now, we carried out the flow visualization and inversitgation of flow around a flap rudder (trailing-edge flap). Flow visualization results of flap defection shown as the flow around a NACA0020 Flap Rudder will be conducted in a Circulating Water Channel. The purpose of this investigation will be to investigate the development of the separation region on the flap rudder with the variation of angle of attack and determine the angle of attack at which the flow separates and reattaches.

  • PDF

The Shearing Characteristics of the Model Otter Boards with the Flap (Flap을 부착한 모형전개판의 전개성능)

  • KIM Yong-Hae;KO Kwan-Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.484-488
    • /
    • 1987
  • The model experiments were performed in tile circular water tank on the simple cambered and the super-V otter boards attached with the slotted fowler flap at the trailing edge in order to develop more efficient shearing characteristics. The dimension of the model otter boards was varied slightly in the flap chord ratio $0.20\~0.22$ and in the area $432\~426cm^2$ in accordance with the flap angle $30\~50^{\circ}$. The maximum shearing coefficient $C_L=1.78$ and hydrodynamic efficiency $C_L/C_D=4.0$ in the superV type were higher than their efficiencies $C_L=1.75$ and $C_L/C_D=3.7$ in the simple cambered type. As the shearing forces of the otter boards with flap were increased $20\~30\%$ mere than these without flap in spite of increasing the drag and the instability. The effect of flap should be fully investigated for the application.

  • PDF

Aerodynamic control capability of a wing-flap in hypersonic, rarefied regime: Part II

  • Zuppardi, Gennaro;Vangone, Daniele
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.503-514
    • /
    • 2017
  • The attitude control of an aircraft is usually fulfilled by means of thrusters at high altitudes. Therefore, the possibility of using also aerodynamic surfaces would produce the advantage of reducing the amount of fuel for the thrusters to be loaded on board. For this purpose, Zuppardi already considered some aerodynamic problems linked to the use of a wing flap in a previous paper. A NACA 0010 airfoil with a trailing edge flap of 35% of the chord, in the range of angle of attack 0-40 deg and flap deflections up to 30 deg was investigated. Computer tests were carried out in hypersonic, rarefied flow by a direct simulation Monte Carlo code at the altitudes of 65 and 85 km of Earth Atmosphere. The present work continues this subject, considering the same airfoil and free stream conditions but two flap extensions of 45% and 25% of the chord and two flap deflections of 15 and 30 deg. The main purpose is to compare the influence of the flap dimension with that of the flap deflection. The present analysis is carried out in terms of: 1) percentage variation of the global aerodynamic coefficients with respect to the no-flap configuration, 2) increment of pressure and heat flux on the airfoil lower surface due to the Shock Wave-Shock Wave Interaction (SWSWI) with respect to the same quantities with no SWSWI or in no-flap configuration, 3) flap hinge moment. Issues 2) and 3) are important for the design of the mechanical and thermal protection system and of the flap actuator, respectively. Under the above mentioned test and geometrical conditions, the flap deflection is aerodynamically more effective than the flap extension, because it involves higher variation of the aerodynamic coefficients. However, tests verify that a smaller deflection angle involves the advantage of a smaller increment of pressure and heat flux on the airfoil lower surface, due to SWSWI, as well as a smaller hinge moment.

Numerical Investigation of The Effect of External Stores on Tail Wing Surfaces of a Generic Fighter Aircraft (전투기 형상의 외부장착물이 꼬리날개에 미치는 영향에 대한 수치적 연구)

  • Kim, Min-Jae;Kwon, Oh-Joon;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.211-219
    • /
    • 2008
  • A three-dimensional inviscid flow solver has been developed based on unstructured meshes for the investigation of the effect of the external stores on the tail surfaces of a generic fighter aircraft. The numerical method is based on a vertex-centered finite-volume discretization and an implicit point Gauss-Seidel time integration. The calculations were made for a steady flow and the computed results were compared with experimental data to validate the flow solver. An unsteady time-accurate computation of the generic fighter aircraft with external stores at transonic flight conditions showed that the external stores cause unsteady loading on the horizontal tail surface due to the mutual interference between their wake and the horizontal tail surface. It was shown that downward deflection of the trailing edge flap significantly reduces the undesirable interference effect.

A Numerical Study on the Characteristics of a Thick Flapped Rudder depending on Various Geometric Parameters using Computational Fluid Dynamics Technique

  • Nguyen, Tien Thua;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.41 no.2
    • /
    • pp.33-38
    • /
    • 2017
  • A marine flapped rudder is designed to improve the effective lift generated by the rudder; this also improves the maneuverability of the ship. The flap is a high lift device installed at the trailing edge of the rudder to augment lift. In this paper, the characteristics of a thick flapped rudder are analyzed at a low Reynolds number with various ratios of flap chord length to total chord length and various aspect ratios, based on the computational fluid dynamics technique. The performance of the rudder with respect to lift, drag, and center of pressure are investigated, and the efficient ratio of flap chord length to total chord length and improved aspect ratio are determined. Ed: highlight - or 'superior'. As a case study, the flow on the flapped rudder of an NACA0021 section shape in free stream condition is simulated. The standard k-epsilon turbulence model is used to model the flow around the flapped rudder. The results indicate that the efficient ratio of the flap chord length to total chord length and aspect ratio are 0.3 and 1.4, respectively.