• 제목/요약/키워드: trafficking

검색결과 184건 처리시간 0.035초

Functions of the Plant Qbc SNARE SNAP25 in Cytokinesis and Biotic and Abiotic Stress Responses

  • Won, Kang-Hee;Kim, Hyeran
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.313-322
    • /
    • 2020
  • Eukaryotes transport biomolecules between intracellular organelles and between cells and the environment via vesicle trafficking. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE proteins) play pivotal roles in vesicle and membrane trafficking. These proteins are categorized as Qa, Qb, Qc, and R SNAREs and form a complex that induces vesicle fusion for targeting of vesicle cargos. As the core components of the SNARE complex, the SNAP25 Qbc SNAREs perform various functions related to cellular homeostasis. The Arabidopsis thaliana SNAP25 homolog AtSNAP33 interacts with Qa and R SNAREs and plays a key role in cytokinesis and in triggering innate immune responses. However, other Arabidopsis SNAP25 homologs, such as AtSNAP29 and AtSNAP30, are not well studied; this includes their localization, interactions, structures, and functions. Here, we discuss three biological functions of plant SNAP25 orthologs in the context of AtSNAP33 and highlight recent findings on SNAP25 orthologs in various plants. We propose future directions for determining the roles of the less well-characterized AtSNAP29 and AtSNAP30 proteins.

생체고분자 단백질 및 RNA의 세포간 이동 조절 (Regulation of Intercellular Protein and RNA Movement)

  • 문주연;정진희;임영길;;;;김재연
    • Journal of Plant Biotechnology
    • /
    • 제34권2호
    • /
    • pp.129-137
    • /
    • 2007
  • Intercellular signaling is a crucial biological process for the coordination of cell differentiation, organ development and whole plant physiology. The intercellular movement of macromolecule signals such as proteins and RNAs has emerged as a novel mechanism of cell-to-cell communication in plant. Plasmodesmata, which are intercellular symplasmic channels, provide a key pathway for cell-to-cell trafficking of regulatory proteins / RNAs. This review specifically focuses on integrating the recent understanding on non-cell autonomous macromolecules, their function and regulatory mechanisms of intercellular trafficking through plasmodesmata.

ASIC2a-dependent increase of ASIC3 surface expression enhances the sustained component of the currents

  • Kweon, Hae-Jin;Cho, Jin-Hwa;Jang, Il-Sung;Suh, Byung-Chang
    • BMB Reports
    • /
    • 제49권10호
    • /
    • pp.542-547
    • /
    • 2016
  • Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the nervous system. Proton sensing by ASICs has been known to mediate pain, mechanosensation, taste transduction, learning and memory, and fear. In this study, we investigated the differential subcellular localization of ASIC2a and ASIC3 in heterologous expression systems. While ASIC2a targeted the cell surface itself, ASIC3 was mostly accumulated in the ER with partial expression in the plasma membrane. However, when ASIC3 was co-expressed with ASIC2a, its surface expression was markedly increased. By using bimolecular fluorescence complementation (BiFC) assay, we confirmed the heteromeric association between ASIC2a and ASIC3 subunits. In addition, we observed that the ASIC2a-dependent surface trafficking of ASIC3 remarkably enhanced the sustained component of the currents. Our study demonstrates that ASIC2a can increase the membrane conductance sensitivity to protons by facilitating the surface expression of ASIC3 through herteromeric assembly.

Targeted Nanomedicine that Interacts with Host Biology

  • 주진명
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.81-81
    • /
    • 2017
  • Nanotechnology is of great importance to molecular biology and medicine because life processes are maintained by the action of a series of molecular nanomachines in the cell machinery. Recent advances in nanoscale materials that possess emergent physical properties and molecular organization hold great promise to impact human health in the diagnostic and therapeutic arenas. In order to be effective, nanomaterials need to navigate the host biology and traffic to relevant biological structures, such as diseased or pathogenic cells. Moreover, nanoparticles intended for human administration must be designed to interact with, and ideally leverage, a living host environment. Inspired by nature, we use peptides to transfer biological trafficking properties to synthetic nanoparticles to achieve targeted delivery of payloads. In this talk, development of nanoscale materials will be presented with a particular focus on applications to three outstanding health problems: bacterial infection, cancer detection, and traumatic brain injury. A biodegradable nanoparticle carrying a peptide toxin trafficked to the bacterial surface has antimicrobial activity in a pneumonia model. Trafficking of a tumor-homing nanoprobes sensitively detects cancer via a high-contrast time-gated imaging system. A neuron-targeted nanoparticle carrying siRNA traffics to neuronal populations and silences genes in a model of traumatic brain injury. Unique combinations of material properties that can be achieved with nanomaterials provide new opportunities in translational nanomedicine. This framework for constructing nanomaterials that leverage bio-inspired molecules to traffic diagnostic and therapeutic payloads can contribute on better understanding of living systems to solve problems in human health.

  • PDF

MICAL-like Regulates Fasciclin II Membrane Cycling and Synaptic Development

  • Nahm, Minyeop;Park, Sunyoung;Lee, Jihye;Lee, Seungbok
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.762-767
    • /
    • 2016
  • Fasciclin II (FasII), the Drosophila ortholog of neural cell adhesion molecule (NCAM), plays a critical role in synaptic stabilization and plasticity. Although this molecule undergoes constitutive cycling at the synaptic membrane, how its membrane trafficking is regulated to ensure proper synaptic development remains poorly understood. In a genetic screen, we recovered a mutation in Drosophila mical-like that displays an increase in bouton numbers and a decrease in FasII levels at the neuromuscular junction (NMJ). Similar phenotypes were induced by presynaptic, but not postsynaptic, knockdown of mical-like expression. FasII trafficking assays revealed that the recycling of internalized FasII molecules to the cell surface was significantly impaired in mical-like-knockdown cells. Importantly, this defect correlated with an enhancement of endosomal sorting of FasII to the lysosomal degradation pathway. Similarly, synaptic vesicle exocytosis was also impaired in mical-like mutants. Together, our results identify Mical-like as a novel regulator of synaptic growth and FasII endocytic recycling.

Antiviral Activity of Methylelaiophylin, an ${\alpha}$-Glucosidase Inhibitor

  • Lee, Do-Seung;Woo, Jin-Kyu;Kim, Dong-Hern;Kim, Min-Young;Cho, So-Mi K.;Kim, Jae-Hoon;Park, Se-Pill;Lee, Hyo-Yeon;Riu, Key Zung;Lee, Dong-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권3호
    • /
    • pp.263-266
    • /
    • 2011
  • Methylelaiophylin isolated from Streptomyces melanosporofaciens was selected as an ${\alpha}$-glucosidase inhibitor with an $IC_{50}$ value of 10 ${\mu}M$. It showed mixed-type inhibition of ${\alpha}$-glucosidase with a $K_i$ value of 5.94 ${\mu}M$. In addition, methylelaiophylin inhibited the intracellular trafficking of hemagglutinin-neuramidase (HN), a glycoprotein of Newcastle disease virus (NDV), in baby hamster kidney (BHK) cells. Methylelaiophylin inhibited the cell surface expression of NDV-HN glycoprotein without significantly affecting HN glycoprotein synthesis in NDV-infected BHK cells.

Channel Function of TRPML1 Prompts Lipolysis in Mature Adipocytes

  • Kim, Mi Seong;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • 제43권1호
    • /
    • pp.23-27
    • /
    • 2018
  • Increased intracellular levels of $Ca^{2+}$ are generally thought to negatively regulate lipolysis in mature adipocytes, whereas store-operated $Ca^{2+}$ entry was recently reported to facilitate lipolysis and attenuate lipotoxicity by inducing lipophagy. Transient receptor potential mucolipin1 (TRPML1), a $Ca^{2+}$-permeable non-selective cation channel, is mainly expressed on the lysosomal membrane and plays key roles in lysosomal homeostasis and membrane trafficking. However, the roles of TRPML1 in lipolysis remains unclear. In this study, we examined whether the channel function of TRPML1 induces lipolysis in mature adipocytes. We found that treatment of mature adipocytes with ML-SA1, a specific agonist of TRPML1, solely upregulated extracellular glycerol release, but not to the same extent as isoproterenol. In addition, knockdown of TRPML1 in mature adipocytes significantly reduced autophagic flux, regardless of ML-SA1 treatment. Our findings demonstrate that the channel function of TRPML1 partially contributes to lipid metabolism and autophagic membrane trafficking, suggesting that TRPML1, particularly the channel function of TRPML1, is as therapeutic target molecule for treating obesity.

Rat 바닐로이드 수용체 TRPV1과 Rab11-FIP3의 특이적 결합 (Specific Interaction of Rat Vanilloid Receptor, TRPV1 with Rab11-FIP3)

  • 이순열;김미란
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.312-317
    • /
    • 2011
  • 캡사이신 채널로 알려진 바닐로이드 수용체 TRPV1 (캡사이신채널, Transient Receptor Potential Vanilloid 1)은 통증발현에서 중요한 역할을 하는 것으로 알려져 있다. 하지만 TRPV1의 활성조절에 관여하는 단백질에 대하여는 알려진 바가 많지 않다. 최근 rat TRPV1과 직접적으로 결합하는 단백질을 탐색하여 mouse Rab11-FIP3 (rab11-family interaction protein 3)가 rat TRPV1과 직접적으로 결합한다는 것이 보고되었다. Rab11은 여러 가지의 세포내 이동에 관여하는 것으로 보고되었다. 그러므로 Rab11-FIP3과의 결합을 통해 TRPV1의 세포막으로의 이동에 관여할 것으로 추측할 수 있다. 본 연구에서는 전에 보고된 연구가 mouse와 rat 이라는 다른 종의 단백질끼리의 결합이기 때문에 같은 종에서의 상호작용을 확인하고 Rab11-FIP3의 TRPV1의 세포막으로의 이동에서의 역할을 알아보고자 현재까지 동정되지 않은 rat의 Rab11-FIP3의 유전자를 GenBank 서열을 바탕으로 rat 뇌의 RNA 로부터 cDNA 를 클로닝하여 유전자를 분리하고 TRPV1 과의 관계를 세포생물학적으로 알아보았다. 연구결과 rat의 Rab11-FIP3는 489개의 아미노산 서열을 가지고 있으며 human과는 80%, mouse와는 90% 이상 아미노산 서열의 상동성을 보였다. 조직별 분포는 심장, 뇌, 간, 콩팥, 정소에서 발현되고 있는 것을 northern blot assay와 western blot assay 로 확인하였다. rat 의 뇌조직에서 TRPV1 과 Rab11-FIP3 단백질이 결합하여 colocalize 하는 것을 면역화학방법으로 확인하였다. 이 결합은 같은 family 의 TRPV2 와는 결합하지 않는 특이적 결합이므로 Rab11-FIP3 가 TRPV1 과 상호작용하여 세포막으로의 이동에 관여할 것이라는 것을 시사한다.

핵테러/방사능테러 탐지 기술 현황 및 국내 탐지체계 구축 방안에 관한 연구 (A Study on Current Status of Detection Technology and Establishment of National Detection Regime against Nuclear/Radiological Terrorism)

  • 곽성우;장성순;이정훈;유호식
    • Journal of Radiation Protection and Research
    • /
    • 제34권3호
    • /
    • pp.115-120
    • /
    • 2009
  • 1990년대 이후부터 현재까지 일련의 사건들은 - 1995년 러시아 국립공원에서 매설된 오염폭탄발견, 2001년 9/11 테러, 2003년 알카에다 오염폭탄 실험 증거 발견등 - 방사성물질 (본 논문에서 언급한 "방사성물질"은 "핵물질 사용후핵연료 방사성동위원소"를 말함)을 이용한 핵테러 및 방사능테러 (본 논문에서는 "핵테러 및 방사능테러"를 간단히 "핵테러/방사능테러"로 표시함)가 공상과학소설이 아닌 실제적으로 발생가능할 심각한 위협임을 보여준다. 이에 따라 세계는 새롭게 대두된 위협에 효과적으로 대응하기 위해 방사성물질에 대한 보안(security)과 물리적방호(physical protection)를 강화하고 방사성물질 불법거래 예방 및 대응체제를 구축하도록 요구하고 있다. 우리나라는 이러한 국제적 추세에 부응하기 위해, 관련 법 체제를 제 개정하고 국제협약 혹은 기구에 합의하거나 가입하였다. 본 논문에서는 핵테러/방사능테러 예방의 일환으로 방사성동위원소에 비해 상대적으로 복잡한 붕괴 과정을 가진 핵물질의 물리적 특성을 살펴보고, 현재 운영되고 있는 핵테러/방사능테러 탐지 장비들의 특성을 파악한다. 검토된 장비들의 특성과 함께 국외에서 국내로 불법 유입된 방사성물질이 목표 지점까지 도달되는 과정, 국내 지형적 특정 그리고 다중 방어적 개념을 고려하여 핵테러/방사능테러 탐지체계 구축 방안을 제안한다. 본 논문은 핵테러/방사능테러로부터 국민의 건강, 안전 그리고 환경을 보호하는데 중요한 기여를 할 것으로 판단된다.

Transepithelial Migration of Neutrophils in Response to Leukotriene $B_4$ is Mediated by a Reactive Oxygen Species-ERK-linked Cascade

  • Woo, Chang-Hoon;Kim, Jae-Hong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.103-106
    • /
    • 2003
  • The epithelial cells that form a barrier lining the lung airway are key regulators of neutrophil trafficking into the airway lumen in a variety of lung inflammatory diseases. Although the lipid mediator leukotriene B$_4$ (LTB$_4$) is known to be a principal chemoattractant for recruiting neutrophils to inflamed sites across the airway epithelium, the precise signaling mechanism involved remains largely unknown. (omitted)

  • PDF