• Title/Summary/Keyword: traffic system

Search Result 5,544, Processing Time 0.038 seconds

A Study on the application simplified traffic signal system at the intersection of the city back road (도시 이면도로 교차로의 간이 교통신호시스템 적용연구)

  • Oh, Eun-Yeol
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.37-44
    • /
    • 2018
  • In this thesis, the traffic signal system is generally applied to the intersection of urban side streets, where blind spots and cramped areas are high risk of accidents, contributing to the prevention of accidents and smooth traffic communication. Therefore, the purpose of the system is to prevent accidents and facilitate traffic communication by providing a light traffic signal at street intersections in busy cities. Also, this study is a universal application of traffic angle to vehicles without the need for a separate terminal installation, and the provision of traffic signals in cities In addition, it is thought that the narrow loss of life on the road can serve as a catalyst to help optimize its function as a signal system that can minimize damage.

Implementation of the Traffic Control System based Low Cost Dual Modular Redundancy (저비용 이중화 시스템 기반 교통신호제어 (시스템) 구현)

  • Lee, Dong-Woo;Na, Jong-Whoa;Kim, Nam-Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.491-500
    • /
    • 2017
  • This paper investigates a low cost dual modular redundancy system based on heartbeat which can be applied to traffic control signal system. Failure of the traffic control signal system can cause traffic confusion and traffic accidents. Therefore safety and reliability of traffic control should be secured using fault tolerance technology. To do this, we configured a redundant board using the open source hardware and the heartbeat technique of Linux HA. The function of the traffic signal control system was verified and the fault recovery time was measured using fault injection test. As a result of the test, the fault recovery time was confirmed to be less than 9 seconds on average, confirming that the reliability target time is satisfied. Based on the results of this study, it is expected that it can be applied to fields requiring high reliability systems such as aviation, space, and nuclear power embedded systems.

A Priority-based Scheduling Approach for TPEG Applications (TPEG 어플리케이션을 위한 우선순위 기반의 스케줄링 방식)

  • Joe, In-Whee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.204-209
    • /
    • 2008
  • It is the most important in the traffic information system how fast to transmit the traffic conditions on each road, or event such as RTM (Road Traffic Message). In order to operate the event information more efficiently in the TPEG system, it is likely that the effective transmission system shall be needed, and this paper will propose the improved transmission system; Breaking away from the conventional method which is to transmit the traffic information by using simple FIFO method while encoding it into TPEG data, the improved transmission system is to transmit the important information more quickly or to advance the transmission cycle by scheduling according to degree of its importance after deciding which one is the important traffic information by comparing the importance ratings in between diverse information. The traffic information with low importance rating is to be transmitted slowly, and its transmission cycle shall become slow as well. In the computer simulations, it is shown that the proposed approach enables to transmit more quickly a sudden change of traffic conditions and the important traffic data.

Traffic Control using Q-Learning Algorithm (Q 학습을 이용한 교통 제어 시스템)

  • Zheng, Zhang;Seung, Ji-Hoon;Kim, Tae-Yeong;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5135-5142
    • /
    • 2011
  • A flexible mechanism is proposed in this paper to improve the dynamic response performance of a traffic flow control system in an urban area. The roads, vehicles, and traffic control systems are all modeled as intelligent systems, wherein a wireless communication network is used as the medium of communication between the vehicles and the roads. The necessary sensor networks are installed in the roads and on the roadside upon which reinforcement learning is adopted as the core algorithm for this mechanism. A traffic policy can be planned online according to the updated situations on the roads, based on all the information from the vehicles and the roads. This improves the flexibility of traffic flow and offers a much more efficient use of the roads over a traditional traffic control system. The optimum intersection signals can be learned automatically online. An intersection control system is studied as an example of the mechanism using Q-learning based algorithm, and simulation results showed that the proposed mechanism can improve the traffic efficiency and the waiting time at the signal light by more than 30% in various conditions compare to the traditional signaling system.

Development of Dynamic Traffic Information System based on GPS Technology (GPS 기술기반의 동적 도로소통정보시스템 개발)

  • Jang, Yong-Gu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.14-24
    • /
    • 2006
  • There are many problems and limits in equipments being used for traffic-volume analysis in the country. And traffic-volume information acquired through existing equipments is not provided in real-time. In the case of urban, there are limits on guarantee of trust on comprehending a appropriate road-volume because of difficulty on analyzing traffic-volume density and time series. And it is difficult to applicate in deciding a road policy as existing equipments don't provide the control information of traffic-flow. Therefore, it is necessary to build a road-flow policy rapidly and accurately through the road-flow information that analyze post-processed statistics data using traffic-flow investigation based on real time. In this study, we developed TICS(Traffic Information Collection System) based on GPS which could transmit traffic information transformed from car location information to traffic control center. And we developed TCS(Traffic Control System) based on Web GIS, which could manage and analyze transmitted traffic information, and it could offer handled road-flow information to Web-site in realtime.

  • PDF

Multi-Agent for Traffic Simulation with Vehicle Dynamic Model I : Development of Traffic Environment (차량 동역학을 이용한 멀티에이전트 기반 교통시뮬레이션 개발 I : 교통 환경 개발)

  • 조기용;권성진;배철호;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.125-135
    • /
    • 2004
  • The validity of simulation has been well-established for decades in areas such as computer and communication system. Recently, the technique has become entrenched in specific areas such as transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and their driver's characteristics, even though it is known that they are important factors for any traffic flow analysis, have never been considered sufficiently. In this paper, the traffic simulation using a multi-agent approach with considering vehicle dynamics is proposed. The multi-agent system is constructed with the traffic environment and the agents of vehicle and driver. The traffic environment consists of multi-lane roads, nodes, virtual lanes, and signals. To ensure the fast calculation, the agents are performed on the based of the rules to regulate their behaviors. The communication frameworks are proposed for the agents to share the information of vehicles' velocity and position. The model of a driver agent which controls a vehicle agent is described in the companion paper. The vehicle model contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation has proceeded for an interrupted and uninterrupted flow model. The result has shown that the driver agent performs human-like behavior ranging from slow and careful to fast and aggressive driving behavior, and that the change of the traffic state is closely related with the distance and the signal delay between intersections. The system developed shows the effectiveness and the practical usefulness of the traffic simulation.

A Study of Classification Analysis about Traffic Conditions Using Factor Analysis and Cluster Analysis (요인분석 및 군집분석을 활용한 교통상황 유형 분류분석)

  • Su-hwan Jeong;Kyeung-hee Han;Jaehyun (Jason) So;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • In this study, a classification analysis was performed based on the type of traffic situation. The purpose was to derive the major variable factors that could represent the traffic situation. The TTI(Travel Time Index) was used as a criterion for determining traffic conditions, and analysis was performed using data generally detected by the Vehicle Detecting System(VDS). First, the major factors influencing the traffic situation were selected through factor analysis, and traffic conditions were clustered through a cluster analysis of the major factors. After that, variance analysis for each cluster was performed based on the TTI, and similar clusters were merged to categorize the type of traffic situation. The analysis derived, the maximum queue length and occupancy as major factors that could represent the traffic situation. Through this study, it is expected that efficient management of traffic congestion would be possible by just concentrating on the main variable factors that affect the traffic situation.

Spatiotemporal Traffic Density Estimation Based on Low Frequency ADAS Probe Data on Freeway (표본 ADAS 차두거리 기반 연속류 시공간적 교통밀도 추정)

  • Lim, Donghyun;Ko, Eunjeong;Seo, Younghoon;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.208-221
    • /
    • 2020
  • The objective of this study is to estimate and analyze the traffic density of continuous flow using the trajectory of individual vehicles and the headway of sample probe vehicles-front vehicles obtained from ADAS (Advanced Driver Assitance System) installed in sample probe vehicles. In the past, traffic density of continuous traffic flow was mainly estimated by processing data such as traffic volume, speed, and share collected from Vehicle Detection System, or by counting the number of vehicles directly using video information such as CCTV. This method showed the limitation of spatial limitations in estimating traffic density, and low reliability of estimation in the event of traffic congestion. To overcome the limitations of prior research, In this study, individual vehicle trajectory data and vehicle headway information collected from ADAS are used to detect the space on the road and to estimate the spatiotemporal traffic density using the Generalized Density formula. As a result, an analysis of the accuracy of the traffic density estimates according to the sampling rate of ADAS vehicles showed that the expected sampling rate of 30% was approximately 90% consistent with the actual traffic density. This study contribute to efficient traffic operation management by estimating reliable traffic density in road situations where ADAS and autonomous vehicles are mixed.

A Study on the Development of Traffic Accident Information System Based on WebGIS (WebGIS 기반 교통사고정보관리 시스템 개발에 관한 연구)

  • Jeong, Su-Jin;Lim, Seung-Hyeon;Cho, Gi-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1003-1010
    • /
    • 2006
  • This study developed a traffic accident information management system based on WebGIS that can process a lot of data for giving effectively diagnosis of traffic accidents in serious damage circumstances by traffic accident. Also, this study presents a way to compose and to convey traffic accident information. In addition, non-spatial attributes as well as spatial attributes about traffic accidents information be integrated and managed by the system. To provide Web service, we developed modules that can supply visually spatial information and traffic accidents data through ASP, Javascript, ArcIMS based on Web and constructed a server. And constructed system include a function that offer the now situation of traffic accident in real time, which supply the statistical data of traffic accident through Web as soon as user entry data in comparison with previous way that preparatory period until traffic accidents data is supplied to peoples had been long. Traffic accidents are analyzed with only nonspatial attribute by simply collecting in the past. However, system constructed by this study offer new function that can grasp visually accident spot circumstance and use detailed content and accurate location data as well as statistical data of traffic accidents. Also, it offer interface that can connect directly with accident charge policeman.

Development of the Traffic Actuation Signal Control System Based on Fuzzy Logic on an Arterial Street (Fuzzy Logic을 적용한 간선도로 상의 교통감응 신호제어)

  • 진선미;김성호;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.71-83
    • /
    • 2003
  • An arterial street control is performed for the purpose of the progression of a traffic flow using the arterial. However during the progression in the arterial, the change according to the time is one of the most representative problems occurring at a signal plan. This paper intends to efficiently operate the arterial progression by applying fuzzy logic, which is thought to be the most possible one in the inference as that of the human logic, to the traffic responsive control system. Fuzzy Logic controller is appliable to the daily human language (linguistic). can be dealt with the uncertain traffic data and is useful on planning the signal control to sensitively confront the randomly changing traffic condition. This study, based on the signal control part of the isolated intersection in "A Development of a Real-time, Traffic Adaptive Control Scheme Through VIDs"(Seong Ho. Kim. 1996). suggested the strategy for the progression control in the arterial and analyzed its effect by comparing the effect of the existing control method. In addition, the study compared each effect by using TRAF-NETSIM which is the traffic simulation software to analyze each control method.