• Title/Summary/Keyword: traffic space

Search Result 829, Processing Time 0.025 seconds

Development of GPS game machine of space and a position information system

  • Lee, Dae-Young;Park, Kil-Hwan;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.243-246
    • /
    • 2003
  • This system is unionized form about GPS and a pocket game machine. This game machine of the use only for the game with an existing system but the function of various purposes which carries out service relevant to a user's position information. This system have the game function, the function to offer space guidance service by the theme interlocked with a user's position, and the traffic safety education function.

  • PDF

The Establishment of Walking Energy-Weighted Visibility ERAM Model to Analyze the 3D Vertical and Horizontal Network Spaces in a Building (3차원 수직·수평 연결 네트워크 건축 공간분석을 위한 보행에너지 가중 Visibility ERAM 모델 구축)

  • Choi, Sung-Pil;Piao, Gen-Song;Choi, Jae-Pil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.23-32
    • /
    • 2018
  • The purpose of this study is to establish a walking energy weighted ERAM model that can predict the pedestrian volume by the connection structure of the vertical and horizontal spaces within a three-dimensional building. The process of building a walking-energy weighted ERAM model is as follows. First, the spatial graph was used to reproduce three-dimensional buildings with vertical and horizontal spatial connection structures. Second, the walking energy was measured on the spatial graph. Third, ERAM model was used to apply weights with spatial connection properties in random walking environment, and the walking energy weights were applied to the ERAM model to calculate the walk energy weighted ERAM values and visualize the distribution of pedestrian flow. To verify the validation of the established model, existing and proposed spatial analysis models were compared to real space. The results of this study are as follows : The model proposed in this study showed as much elaborated estimation of pedestrian traffic flow in real space as in traditional spatial analysis models, and also it showed much higher level of forecasting pedestrian traffic flow in real space than existing models.

Monitoring Network Security Situation Based on Flow Visualization (플로우 시각화 기반의 네트워크 보안 상황 감시)

  • Chang, Beom-Hwan
    • Convergence Security Journal
    • /
    • v.16 no.5
    • /
    • pp.41-48
    • /
    • 2016
  • In this paper we propose a new method of security visualization, VisFlow, using traffic flows to solve the problems of existing traffic flows based visualization techniques that were a loss of end-to-end semantics of communication, reflection problem by symmetrical address coordinates space, and intuitive loss problem in mass of traffic. VisFlow, a simple and effective security visualization interface, can do a real-time analysis and monitoring the situation in the managed network with visualizing a variety of network behavior not seen in the individual traffic data that can be shaped into patterns. This is a way to increase the intuitiveness and usability by identifying the role of nodes and by visualizing the highlighted or simplified information based on their importance in 2D/3D space. In addition, it monitor the network security situation as a way to increase the informational effectively using the asymmetrical connecting line based on IP addresses between pairs of nodes. Administrator can do a real-time analysis and monitoring the situation in the managed network using VisFlow, it makes to effectively investigate the massive traffic data and is easy to intuitively understand the entire network situation.

Estimation of Ventilation Volume by Traffic Ventilation Force in Tunnel (교통환기력에 의한 터널내 환기량 추정에 관한 연구)

  • 김종호;이상칠;도연지;김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.273-278
    • /
    • 1995
  • This study is to estimate the ventilation volume by the traffic that originated from driving automobiles for two tunnels (Kugi tunnel and Kumhwa tunnel) that adopted natural ventilation system among tunnels of Seoul, and on the basis of which, we estimated the ventilation velume at various conditions. With the result of the estimation, we will present the basic method that can be operated with the optimum condition for the ventilation system. Estimating the predicted ventilation volume in the tennel by the pollutant concentration, we used traffic volume and CO emission data by the automobile speed and CO concentration in the tunnel. And, when we estimated the traffic ventilation volume by natural and traffic ventilation force, we used traffic volume, automobile speed, tunnel area, automobile area data and so on. As the result of simple regression between predicted ventilation volume and traffic ventilation volume, we attained the regression coefficient 0.88, and achieved the relation form that predicted ventilation volume equal 0.12x traffic ventilation volume-92, 000. Using this equation, we estimated the ventilation volume to satisfy the enviromnental standards of several space, and calculated the required volume for mechanical ventilation. Incase of Kumhwa Tunnel, there is a need of mechanical ventilation all day long to satisfy air quality standard 9 ppm for 8 hours average and 10 ppm for the indoor air quality standard of public facilities.

  • PDF

A Genetic Algorithm for Trip Distribution and Traffic Assignment from Traffic Counts in a Stochastic User Equilibrium

  • Sung, Ki-Seok;Rakha, Hesham
    • Management Science and Financial Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-69
    • /
    • 2009
  • A network model and a Genetic Algorithm (GA) is proposed to solve the simultaneous estimation of the trip distribution and traffic assignment from traffic counts in the congested networks in a logit-based Stochastic User Equilibrium (SUE). The model is formulated as a problem of minimizing a non-linear objective function with the linear constraints. In the model, the flow-conservation constraints are utilized to restrict the solution space and to force the link flows become consistent to the traffic counts. The objective of the model is to minimize the discrepancies between two sets of link flows. One is the set of link flows satisfying the constraints of flow-conservation, trip production from origin, trip attraction to destination and traffic counts at observed links. The other is the set of link flows those are estimated through the trip distribution and traffic assignment using the path flow estimator in the logit-based SUE. In the proposed GA, a chromosome is defined as a real vector representing a set of Origin-Destination Matrix (ODM), link flows and route-choice dispersion coefficient. Each chromosome is evaluated by the corresponding discrepancies. The population of the chromosome is evolved by the concurrent simplex crossover and random mutation. To maintain the feasibility of solutions, a bounded vector shipment technique is used during the crossover and mutation.

Hierarchical QoS Architecture for Virtual Dancing Environment (분산 가상현실을 위한 계층적 QoS 지원 기법)

  • 김진용;원유집;김범은;박종일;박용진
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.675-690
    • /
    • 2003
  • In this paper, we present the virtual dancing studio for distributed virtual environment. In this system, geographically distributed user shares the virtual dancing hall and interacts with each other. The participating object can be a graphical avatar or a live video stream. It allows the coexistence of graphic objects and real images in the shared virtual space. One of the main technical challenges in developing the distributed virtual environment is to handle excessive network traffic. In an effort to effectively reduce the network traffic, we propose a scheme to adjust the QoS of each object with respect to the distance from the observer in the virtual space. The server maintains the QoS vector for each client's shared space and controls the packet traffic to individual clients based on its QoS vectors. We develop a proto-type virtual dancing environment. Java based development enables the client to be platform independent. The result of experiment shows that the adoption of hierarchical QoS management significantly reduces the overall network traffic.

Intensity estimation with log-linear Poisson model on linear networks

  • Idris Demirsoy;Fred W. Hufferb
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • Purpose: The statistical analysis of point processes on linear networks is a recent area of research that studies processes of events happening randomly in space (or space-time) but with locations limited to reside on a linear network. For example, traffic accidents happen at random places that are limited to lying on a network of streets. This paper applies techniques developed for point processes on linear networks and the tools available in the R-package spatstat to estimate the intensity of traffic accidents in Leon County, Florida. Methods: The intensity of accidents on the linear network of streets is estimated using log-linear Poisson models which incorporate cubic basis spline (B-spline) terms which are functions of the x and y coordinates. The splines used equally-spaced knots. Ten different models are fit to the data using a variety of covariates. The models are compared with each other using an analysis of deviance for nested models. Results: We found all covariates contributed significantly to the model. AIC and BIC were used to select 9 as the number of knots. Additionally, covariates have different effects such as increasing the speed limit would decrease traffic accident intensity by 0.9794 but increasing the number of lanes would result in an increase in the intensity of traffic accidents by 1.086. Conclusion: Our analysis shows that if other conditions are held fixed, the number of accidents actually decreases on roads with higher speed limits. The software we currently use allows our models to contain only spatial covariates and does not permit the use of temporal or space-time covariates. We would like to extend our models to include such covariates which would allow us to include weather conditions or the presence of special events (football games or concerts) as covariates.

Development of Two-lane Highway Vehicle Model Based on Discrete Time and Space (이산적 시공간 기반 2차로 도로 차량모형 개발)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.785-791
    • /
    • 2011
  • Two-lane and two-way traffic flow shows various dynamic relationships according to the behaviors of low-speed vehicle and overtaking. And it is essential to develop a vehicle model which simultaneously explains the behaviors of low-speed vehicle and overtaking using opposite lane in order to microscopically analyze various two-lane and two-way traffic flows by traffic flow simulation. In Korea, some studies for car-following and lane-changing models for freeway or signalized road have been reported, but few researches for the development of vehicle model for two-lane and two-way highway have been done. Hence, a microscopic two-lane and two-way vehicle model was, in this study, developed with the consideration of overtaking process and is based on CA (Cellular Automata) which is one of discrete time-space models. The developed model is parallel combined with an adjusted CA car-following model and an overtaking model. The results of experimental simulation showed that the car-following model explained the various macroscopic relationships of traffic flow and overtaking model reasonably generated the various behaviors of macroscopic traffic flows under the conditions of both opposite traffic flow and stochastic parameter to consider overtaking. The vehicle model presented in this study is expected to be used for the simulation of more various two-lane, two-way traffic flows.

Study on the Collision Avoidance Algorithm against Multiple Traffic Ships using Changeable Action Space Searching Method (가변공간 탐색법을 이용한 다중선박의 충돌회피 알고리즘에 관한 연구)

  • Son, N.S.;Furukawa, Y.;Kim, S.Y.;Kijima, K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • Auto-navigation algorithm have been studied to avoid collision and grounding of a ship due to human error. There have been many research on collision avoidance algorithms but they have been validated little on the real coastal traffic situation. In this study, a Collision Avoidance algorithm is developed by using Fuzzy algorithm and the concept of Changeable Action Space Searching (CAS). In the first step, on a basis of collision risk calculated from fuzzy algorithm in the current time(t=to), alternative Action Space for collision avoidance is planned. In the second step, next alternative Action Space for collision avoidance in the future($t=to+{\Delta}t$) is corrected and re-planned with re-evaluated collision risk. In the third step, the safest and most effective course among Action Space is selected by using optimization method in real time. In this paper, the main features of the developed collision avoidance algorithm (CAS) are introduced. CAS is implemented in the ship-handling simulator of MOERI. The performance of CAS is tested on the situation of open sea with 3 traffic ships, whose position is assumed to be informed from AIS. Own-ship is fully autonomously navigated by autopilot including the collision avoidance algorithm, CAS. Experimental results show that own-ship can successfully avoid the collision against traffic ships and the calculated courses from CAS are reasonable.

  • PDF