• Title/Summary/Keyword: traffic seasonality

Search Result 7, Processing Time 0.023 seconds

Traffic Seasonality aware Threshold Adjustment for Effective Source-side DoS Attack Detection

  • Nguyen, Giang-Truong;Nguyen, Van-Quyet;Nguyen, Sinh-Ngoc;Kim, Kyungbaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2651-2673
    • /
    • 2019
  • In order to detect Denial of Service (DoS) attacks, victim-side detection methods are used popularly such as static threshold-based method and machine learning-based method. However, as DoS attacking methods become more sophisticated, these methods reveal some natural disadvantages such as the late detection and the difficulty of tracing back attackers. Recently, in order to mitigate these drawbacks, source-side DoS detection methods have been researched. But, the source-side DoS detection methods have limitations if the volume of attack traffic is relatively very small and it is blended into legitimate traffic. Especially, with the subtle attack traffic, DoS detection methods may suffer from high false positive, considering legitimate traffic as attack traffic. In this paper, we propose an effective source-side DoS detection method with traffic seasonality aware adaptive threshold. The threshold of detecting DoS attack is adjusted adaptively to the fluctuated legitimate traffic in order to detect subtle attack traffic. Moreover, by understanding the seasonality of legitimate traffic, the threshold can be updated more carefully even though subtle attack happens and it helps to achieve low false positive. The extensive evaluation with the real traffic logs presents that the proposed method achieves very high detection rate over 90% with low false positive rate down to 5%.

A Study on Dynamic Change of Transportation Demand Using Seasonal ARIMA Model (계절성을 감안한 ARIMA 모형을 이용한 교통수요 동태적 변화 연구)

  • Lee, Jae-Min;Gwon, Yong-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.139-155
    • /
    • 2011
  • This study is to estimate the dynamic change of the regional railway passenger traffic and, based on the estimated, to forecast the future regional railway passenger traffic by using the Seasonal ARIMA model. The existing studies using ARIMA failed to consider seasonality nor the monthly or the quarterly data. It was attempted in this study to use the monthly regional railway passenger traffic data to propose a model that estimates dynamic change of demand. The authors employed the Seasonal ARIMA model previously developed and used (1) the numbers of monthly passenger data and (2) the monthly passenger-km data. The test results showed that the numbers of passengers in 2015 and 2020 would increase by 36% and 71%, respectively, compared to those in 2008. The numbers of passenger-kms in 2015 and 2020 would increase by 25% and 78%, respectively, compared to those in 2008.

LSTM based Network Traffic Volume Prediction (LSTM 기반의 네트워크 트래픽 용량 예측)

  • Nguyen, Giang-Truong;Nguyen, Van-Quyet;Nguyen, Huu-Duy;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.362-364
    • /
    • 2018
  • Predicting network traffic volume has become a popular topic recently due to its support in many situations such as detecting abnormal network activities and provisioning network services. Especially, predicting the volume of the next upcoming traffic from the series of observed recent traffic volume is an interesting and challenging problem. In past, various techniques are researched by using time series forecasting methods such as moving averaging and exponential smoothing. In this paper, we propose a long short-term memory neural network (LSTM) based network traffic volume prediction method. The proposed method employs the changing rate of observed traffic volume, the corresponding time window index, and a seasonality factor indicating the changing trend as input features, and predicts the upcoming network traffic. The experiment results with real datasets proves that our proposed method works better than other time series forecasting methods in predicting upcoming network traffic.

Gibbs Sampling for Double Seasonal Autoregressive Models

  • Amin, Ayman A.;Ismail, Mohamed A.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.557-573
    • /
    • 2015
  • In this paper we develop a Bayesian inference for a multiplicative double seasonal autoregressive (DSAR) model by implementing a fast, easy and accurate Gibbs sampling algorithm. We apply the Gibbs sampling to approximate empirically the marginal posterior distributions after showing that the conditional posterior distribution of the model parameters and the variance are multivariate normal and inverse gamma, respectively. The proposed Bayesian methodology is illustrated using simulated examples and real-world time series data.

A Study on the Traffic Volume Correction and Prediction Using SARIMA Algorithm (SARIMA 알고리즘을 이용한 교통량 보정 및 예측)

  • Han, Dae-cheol;Lee, Dong Woo;Jung, Do-young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.1-13
    • /
    • 2021
  • In this study, a time series analysis technique was applied to calibrate and predict traffic data for various purposes, such as planning, design, maintenance, and research. Existing algorithms have limitations in application to data such as traffic data because they show strong periodicity and seasonality or irregular data. To overcome and supplement these limitations, we applied the SARIMA model, an analytical technique that combines the autocorrelation model, the Seasonal Auto Regressive(SAR), and the seasonal Moving Average(SMA). According to the analysis, traffic volume prediction using the SARIMA(4,1,3)(4,0,3) 12 model, which is the optimal parameter combination, showed excellent performance of 85% on average. In addition to traffic data, this study is considered to be of great value in that it can contribute significantly to traffic correction and forecast improvement in the event of missing traffic data, and is also applicable to a variety of time series data recently collected.

Characteristics of Atmospheric Concentrations of Toxic Volatile Organic Compounds in Korea (II) - Seasonal and Locational Variations (국내 대기 중 독성 휘발성 유기화합물의 오염 특성(II) -계절 및 지역적 변동)

  • 백성옥;김배갑;박상곤
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.207-217
    • /
    • 2002
  • This study was designed to investigate the characteristics of atmospheric concentrations of toxic volatile organic compounds (VOCs) in Korea. Target compounds included 1,3-butadiene, aromatics such as BTEX, and a number of carbonyl compounds. In this paper, as the second part of the study, the seasonal and locational concentrations of atmospheric VOCs were evaluated. Sampling was conducted seasonally at seven sampling sites. each of them representing a large urban area (commercial and residential), a small urban area (commercial and residential), an industrial area (a site within the complex and a residential), and a background place in Korea. In general, higher concentrations were found in the petro-chemical industrial site than other sites, while VOCs measured in commercial (heavy -traffic) sites were higher than residential sites. Seasonality of VOCs concentrations were not so much clear as other combustion related pollutants such as sulfur dioxide, indicating that the VOCs are emitted from a variety of sources, not only vehicle exhaust and point sources but fugitive emissions. Except the industrial site, the concentrations of VOCs measured in this study do not reveal any serious pollution status, since the levels did not exceed any existing ambient standards in the U.K. and/or Japan. However, the increasing number of petrol -powered vehicles and the rapid industrialization in Korea may result in the increased levels of VOCs concentrations in many large urban areas in the near future, if there is no appropriate programme implemented for the control of these compounds.

STL-Attention based Traffic Prediction with Seasonality Embedding (계절성 임베딩을 고려한 STL-Attention 기반 트래픽 예측)

  • Yeom, Sungwoong;Choi, Chulwoong;Kolekar, Shivani Sanjay;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.95-98
    • /
    • 2021
  • 최근 비정상적인 네트워크 활동 감지 및 네트워크 서비스 프로비저닝과 같은 다양한 분야에서 응용되는 네트워크 트래픽 예측 기술이 네트워크 통신 문제에 의한 트래픽의 결측 및 네트워크 유저의 불규칙한 활동에 의한 비선형 특성 때문에 발생하는 성능 저하를 극복하기 위해 딥러닝 신경망에 대한 연구가 활성화되고 있다. 이 딥러닝 신경망 중 시계열 딥러닝 신경망은 단기 네트워크 트래픽 볼륨을 예측할 때 낮은 오류율을 보인다. 하지만, 시계열 딥러닝 신경망은 기울기 소멸 및 폭발과 같은 비선형성, 다중 계절성 및 장기적 의존성 문제와 같은 한계를 보여준다. 이 논문에서는 계절성 임베딩을 고려한 주의 신경망 기반 트래픽 예측 기법을 제안한다. 제안하는 기법은 STL 분해 기법을 통해 분해된 트래픽 트랜드, 계절성, 잔차를 이용하여 일별 및 주별 계절성을 임베딩하고 이를 주의 신경망을 기반으로 향후 트래픽을 예측한다.