• Title/Summary/Keyword: traffic flow data

Search Result 457, Processing Time 0.028 seconds

Analysis of Effects of Autonomous Vehicle Market Share Changes on Expressway Traffic Flow Using IDM (IDM을 이용한 자율주행자동차 시장점유율 변화가 고속도로 교통류에 미치는 영향 분석)

  • Ko, Woori;Park, Sangmin;So, Jaehyun(Jason);Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.13-27
    • /
    • 2021
  • In this study, the impact of traffic flow on the market penetration rate of autonomous vehicles(AV) was analyzed using the data for the year 2020 of the Yongin IC~Yangji IC section of Yeongdong Expressway. For this analysis, a microscopic traffic simulation model VISSIM was utilized. To construct the longitudinal control of the AV, the Intelligent Driver Model(IDM) was built and applied, and the driving behavior was verified by comparison with a normal vehicle. An examination of the study results of mobility and safety according to the market penetration rate of the AV, showed that the network's mobility improves as the market penetration rate increases. However, from the point of view of safety, the network becomes unstable when normal vehicles and AVs are mixed, so there should be a focus on traffic management for ensuring safety in mixed traffic situations.

Deploying Ubiquitous Traffic Flow Control System under the ITS Environments (ITS 환경에 유비쿼터스 교통관리시스템 접목 가능성 연구)

  • Park, Eun-Mi;Oh, Hyun-Sun;Suh, Euy-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.36-46
    • /
    • 2011
  • It is thought traffic flow management under the ubiquitous transportation system has great potential in view of individual vehicle data availability and V2V, V2I two-way communication environments. However, it is expected that deployment of the ubiquitous transportation system takes some time. Therefore it is necessary to evaluate the feasibility of the algorithm under the ITS environment. The speed management algorithm proposed in the previous research is revised to fit for the ITS data collection and information provision environment. And the feasibility of the algorithm is evaluated through simulation experiments.

Forecasting of Traffic Accident Occurrence Pattern Using LSTM (LSTM을 이용한 교통사고 발생 패턴 예측)

  • Roh, You Jin;Bae, Sang Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.59-73
    • /
    • 2021
  • There are many lives lost due traffic accidents, and which have not decreased despite advances in technology. In order to prevent traffic accidents, it is necessary to accurately forecast how they will change in the future. Until now, traffic accident-frequency forecasting has not been a major research field, but has been analyzed microscopically by traditional methods, mainly based on statistics over a previous period of time. Despite the recent introduction of AI to the traffic accident field, the focus is mainly on forecasting traffic flow. This study converts into time series data the records from 1,339,587 traffic accidents that occurred in Korea from 2014 to 2019, and uses the AI algorithm to forecast the frequency of traffic accidents based on driver's age and time of day. In addition, the forecast values and the actual values were compared and verified based on changes in the traffic environment due to COVID-19. In the future, these research results are expected to lead to improvements in policies that prevent traffic accidents.

Lane-wise Travel Speed Characteristics Analysis in Uninterrupted Flow Considering Lane-wise Speed Reversal (차로속도역전현상을 고려한 연속류 도로의 차로별 주행 속도 특성 분석)

  • Yang, Inchul;Jeon, Woo Hoon;Ki, Sung hwan;Yoon, Jungeun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.116-126
    • /
    • 2016
  • In this study, lane-wise traffic flow characteristics were analysed on uninterrupted flow using a new notion of "lane-wise travel speed reversal (LTSR)" which is defined as a phenomena that travel speed in the median lane is lower than other lanes. Mathematical formulation was also proposed to calculate the strength of LTSR. The experiment road site is Seoul Outer Ring Expressway (Jayuro-IC~Jangsoo-IC), and travel trajectories for each four lane were collected for weekdays (Mon. through Fri.) during morning peak. Comparing lane-wise travel speeds for entire test road section, no LTSR was observed, meaning that the travel speed in the median lane is the fastest, followed by 2nd, 3rd, and 4th lane as in order. Howerver, the result of microscopic analysis using 100-meter discrete road section based data shows that LTSR occurs many times. Especially the strength of LTSR is higher in congestion area and freeway merge and diverge segment. It is expected that these results could be used as a fundamental data when establishing lane-by-lane traffic operation strategy and developing lane-wise traffic information collection and dissemination technology.

Development of an AIDA(Automatic Incident Detection Algorithm) for Uninterrupted Flow By Diminishing the Random Noise Effect of Traffic Detector Variables (검측 변수내 Random Noise 제거를 통한 연속류 돌발상황 자동감지알고리즘 개발)

  • Choi, Jong-Tae;Shin, Chi-Hyun;Kang, Seung-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.29-38
    • /
    • 2012
  • The data quality and measurements along consecutive detector stations can vary much even in the same traffic conditions due to variety in detector types, calibration and maintenance effort, field operation periods, minor geometric changes of roads and so on. These faulty situations often create 10% or more of inherent difference in important traffic measurements between two stations even under stable low flow condition. Low detection rates(DR) and high false alarm rates(FAR) therefore sets in among many popular Automatic Incident Detection Algorithms(AIDA). This research is two-folded and aims mainly to develop a new AIDA for uninterrupted flow. For this purpose, a technique which utilizes a Simple Arithmetic Operation(SAO) of traffic variables is introduced. This SAO technique is designed to address the inherent discrepancy of detector data observed successive stations, and to overcome the degradation of AIDA performance. It was found that this new algorithm improves DR as much as 95 percent and above. And mean time to detection(MTTD) is found to be 1 minutes or less. When it comes to FAR, this new approach compared to existing AIDAs reduces FAR up to 31.0 percent. And capability in persistency check of on-going incidents was found excellent as well.

Construction Method of Time-dependent Origin-Destination Traffic Flow for Expressway Corridor Using Individual Real Trip Data (실제 통행기록 자료를 활용한 고속도로 Corridor 시간대별 O-D 구축)

  • Yu, Jeong Whon;Lee, Mu Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.185-192
    • /
    • 2011
  • More practical outputs and insights can be obtained through transportation analysis considering the time-dependent traffic movements. This study proposes a method of constructing time-dependent O-D trip tables for expressway corridor using real-world individual trip data. In this study, time-dependent O-D trip tables for the nationwide highway network are constructed based on toll collection system data. The proposed methodology is to convert nationwide time-dependent O-D trip tables into Korean expressway corridor O-D trip tables in order to deal with the computational complexity arising from simulating a large-scale traffic network. The experiment results suggest that actual individual trip record data can be used to effectively construct time-dependent O-D trip tables. They also imply that the construction of time-dependent O-D trip tables for the national highway networks along with those for Korean expressway developed in this study would make transportation analysis more practical and applicable to real-time traffic operation and control.

A Study on Highway Capacity Variation According to Snowfall Intensity (강설에 따른 고속도로 용량 변화에 관한 연구)

  • Son, Young Tae;Lee, Sang Hwa;Im, Ji Hee
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • Under the consumption of bad weather situation affects traffic flows, the study scope is focused on highway capacity and speed variations among other highway traffic flow characteristic changes according to snowfall density. Thus, this study carried out through the data collection and statistical analysis by focusing on capacity and speed changes. Traffic volume, speed and density were selected as factors to explain the property change of a traffic flow for analysis, and 7 basic sections such as 3 highways in Gyeonggi-do and 4 highways near the meteorological observatory were selected as survey points for data collection. Snowfall levels were classified into 3 steps(Light, Medium, Heavy Snow) to analyze the capacity change by snowfall levels. As a result of analysis, the change of capacity depending on snowfall levels decreased 13.2% in case of light snow compared to a good weather, 18.6% in case of medium snow and 32.0% in case of heavy snow, so the capacity reduction rate increased as the snowfall level increased. The worsening weather appeared to have a very big possibility to act as a factor to reduce the operational efficiency of a road, so a road design and operation method considering this should be presented in the future.

A Study on the Implementation of Microscopic Traffic Simulation Model by Using GIS (GIS를 이용한 미시적 수준의 교통모형 구현에 관한 연구)

  • Kim, Byeongsun
    • Spatial Information Research
    • /
    • v.23 no.4
    • /
    • pp.79-89
    • /
    • 2015
  • This study aims to design and implement a traffic model that can simulate the traffic behavior on the microscopic level by using the GIS. In the design of the model, the vehicle in the simulation environment recognizes the GIS road centerline data as road network data reflecting number of lanes, speed limit and so on. In addition, the behavior model was designed by dividing functions into the environmental perception model, time headway distribution model, car following model, and lane changing model. The implemented model was applied to Jahamun-road of Jongno-gu district to verify the accuracy of the model. As a result, the simulation results on the Jahamun-road had no great error compared with the actual observation data. In the aspect of usability of model, it is judged that this model will be able to effectively contribute to analysis of amount of carbon emission by traffic, evaluation of traffic flow, plans for location of urban infrastructure and so on.

At which station would be installed subsidiary-main track? - Problems of interference with mixed traffic on the railway (완.급행열차 혼합운행에 따른 부본선 설치 정거장 검토)

  • Rho, Hag-Lae
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1848-1859
    • /
    • 2011
  • A subsidiary-main track for passenger station is a low-speed track section distinct from a through route such as a main track. It is parallel to a through track and connected to it at both ends by switches. Sidetracks allow for fast, high priority trains to pass slower or lower priority trains going the same direction. They are important for efficiency to order and organize the flow of rail traffic. In this paper we first describe the minimum headway between trains using the concept of occupation time in a block section, which depends on block systems, signalling system and safety technology. And then a stepwise approach is presented to select station, which is suitable to install sidetrack for a given train-traffic pattern. This approach is tested with sample example data, which are surveyed from track geometry based on the to-be-constructed line.

  • PDF

An Application of Dynamic Route Choice Model Using Optimal Control Theory (최적제어이론을 이용한 동적 통행배정 모형의 적용에 관한 연구)

  • 전경수;오세현
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.4
    • /
    • pp.5-29
    • /
    • 1995
  • Advanced Traveler Inoformation Systems*ATIS) , as a subsystem of ITS influence the travel choices of dreivers by providing them with historical, real-time and predictive information to supprot travel decisions and consequently improves the speed and quality of travel. For thesuccessul accomplishment of ATIS, the time-dependent variations of traffic in a road network and travel times of vehicles during their journey must be predicted . The purpose of this study is to evaluate the past developments in the dynamic route choice models and to apply the instantaneous dynamic user optimal route choice model. recently formulated with flow propagation constraints by Ran, Boyce and LeBlanc, to the real transportation network of Seocho-Ku in Seoul. As input data for this application, the time-dependent travel rates are estimated and the link travel time function is derived. The modelis validated from three view points : the efficiency of model itself the ability to predict traffic volume and travel time on links, and the optimal traffic control.

  • PDF