• Title/Summary/Keyword: traffic flow analysis

Search Result 512, Processing Time 0.029 seconds

A Study on the Traffic Flow Analysis Method by Image Processing (화상처리에 의한 교통류 해석방법에 관한 연구)

  • 이종달;이령욱
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.1
    • /
    • pp.97-116
    • /
    • 1994
  • Today advanced traffic management systems are required because of a high increase in traffic demand. Accordingly, the objective of this study is to take advantage of image processing systems and present image processing methods available for collection of the data on traffic characteristics, and then to investigate the possibility of traffic flow analysis by means of comparison and analysis of measured traffic flow. Data were collected at two places of Daegu city and Kyongbu expressway by using VTR. Rear view (down stream) and frontal view (up stream) methods were employed to compare and analyze traffic characteristics including traffic volume, speed, time-headway, time-occupancy, and vehicle-length, by analysis of measured traffic flow and image processing respectively. Judging from the results obtained by this study, image processing techniques are sufficient for the analysis of traffic volume, but a frame grabber equipped with high speed processor is necessary as well, with low level system judged to be sufficient for traffic volume analysis.

  • PDF

A Study on the Development of the Marine Traffic Analysis System Based on AIS and ENC (AIS 및 전자해도 기반 해상교통량 분석 시스템 개발에 관한 연구)

  • Kim, Dae-Hee;Song, Chae-Uk;Jung, Min
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.43-48
    • /
    • 2007
  • Maritime traffic engineering is a technical field that observes the flow of vessels' traffic in accurate and describes the feature of ship's movement statistically, then contributes for the improvement of traffic flow and the safety of traffic. The flow of marine traffic can be controlled by carrying out assessment and analysis of vessel's traffic. It can realize the safety of marine traffic by accurate research and analysis of vessel's traffic, understanding its flow and analysis data of vessel traffic. This study shows the analysis system of marine traffic connected with Radar, AIS based on ENC(Electronic Navigational Chart). The marine traffic analysis system contributes to the safety of marine traffic through the design of marine traffic route, harbour facilities and improvement of vessels' traffic flow.

A Study on the Development of the Marine Traffic Analysis System Based on AIS and ENC (AIS 및 전자해도 기반 해상교통량 분석 시스템 개발에 관한 연구)

  • Jung, Min;Kim, Dae-Hee;Song, Chae-Uk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.127-132
    • /
    • 2006
  • Maritime transportation engineering is a technical field that observes the flow of vessel's traffic in accurate and describes the feature of ship's movement statistically, then contributes to the improvement of traffic flow and the safety of traffic. The flow of marine traffic can be controlled by carrying out assessment and analysis of vessel's traffic. It can realize the safety of marine traffic by accurate research and analysis of vessel's traffic, understanding its flow and analysis data of vessel traffic. This study the analysis system of marine traffic connected with Radar, AIS based on ENC(Electronic Navigational Chart). The marine traffic analysis system contributes to safety of marine traffic through the design of marine traffic route, harbour facilities and improvement of vessel's traffic flow.

  • PDF

A Flow Analysis Framework for Traffic Video

  • Bai, Lu-Shuang;Xia, Ying;Lee, Sang-Chul
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.45-53
    • /
    • 2009
  • The fast progress on multimedia data acquisition technologies has enabled collecting vast amount of videos in real time. Although the amount of information gathered from these videos could be high in terms of quantity and quality, the use of the collected data is very limited typically by human-centric monitoring systems. In this paper, we propose a framework for analyzing long traffic video using series of content-based analyses tools. Our framework suggests a method to integrate theses analyses tools to extract highly informative features specific to a traffic video analysis. Our analytical framework provides (1) re-sampling tools for efficient and precise analysis, (2) foreground extraction methods for unbiased traffic flow analysis, (3) frame property analyses tools using variety of frame characteristics including brightness, entropy, Harris corners, and variance of traffic flow, and (4) a visualization tool that summarizes the entire video sequence and automatically highlight a collection of frames based on some metrics defined by semi-automated or fully automated techniques. Based on the proposed framework, we developed an automated traffic flow analysis system, and in our experiments, we show results from two example traffic videos taken from different monitoring angles.

  • PDF

A Probabilistic Sampling Method for Efficient Flow-based Analysis

  • Jadidi, Zahra;Muthukkumarasamy, Vallipuram;Sithirasenan, Elankayer;Singh, Kalvinder
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.818-825
    • /
    • 2016
  • Network management and anomaly detection are challenges in high-speed networks due to the high volume of packets that has to be analysed. Flow-based analysis is a scalable method which reduces the high volume of network traffic by dividing it into flows. As sampling methods are extensively used in flow generators such as NetFlow, the impact of sampling on the performance of flow-based analysis needs to be investigated. Monitoring using sampled traffic is a well-studied research area, however, the impact of sampling on flow-based anomaly detection is a poorly researched area. This paper investigates flow sampling methods and shows that these methods have negative impact on flow-based anomaly detection. Therefore, we propose an efficient probabilistic flow sampling method that can preserve flow traffic distribution. The proposed sampling method takes into account two flow features: Destination IP address and octet. The destination IP addresses are sampled based on the number of received bytes. Our method provides efficient sampled traffic which has the required traffic features for both flow-based anomaly detection and monitoring. The proposed sampling method is evaluated using a number of generated flow-based datasets. The results show improvement in preserved malicious flows.

Methodology for Real-time Detection of Changes in Dynamic Traffic Flow Using Turning Point Analysis (Turning Point Analysis를 이용한 실시간 교통량 변화 검지 방법론 개발)

  • KIM, Hyungjoo;JANG, Kitae;KWON, Oh Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.3
    • /
    • pp.278-290
    • /
    • 2016
  • Maximum traffic flow rate is an important performance measure of operational status in transport networks, and has been considered as a key parameter for transportation operation since a bottleneck in congestion decreases maximum traffic flow rate. Although previous studies for traffic flow analysis have been widely conducted, a detection method for changes in dynamic traffic flow has been still veiled. This paper explores the dynamic traffic flow detection that can be utilized for various traffic operational strategies. Turning point analysis (TPA), as a statistical method, is applied to detect the changes in traffic flow rate. In TPA, Bayesian approach is employed and vehicle arrival is assumed to follow Poisson distribution. To examine the performance of the TPA method, traffic flow data from Jayuro urban expressway were obtained and applied. We propose a novel methodology to detect turning points of dynamic traffic flow in real time using TPA. The results showed that the turning points identified in real-time detected the changes in traffic flow rate. We expect that the proposed methodology has wide application in traffic operation systems such as ramp-metering and variable lane control.

DEVELOPMENT OF MATDYMO (MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) I: DEVELOPMENT OF TRAFFIC ENVIRONMENT

  • CHOI K. Y.;KWON S. J.;SUH M. W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.

Analysis of Characteristics of the Dynamic Flow-Density Relation and its Application to Traffic Flow Models (동적 교통량-밀도 관계의 특성 분석과 교통류 모형으로의 응용)

  • Kim, Young-Ho;Lee, Si-Bok
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.179-201
    • /
    • 2004
  • Online traffic flow modeling is attracting more attention due to intelligent transport systems and technologies. The flow-density relation plays an important role in traffic flow modeling and provides a basic way to illustrate traffic flow behavior under different traffic flow and traffic density conditions. Until now the research effort has focused mainly on the shape of the relation. The time series of the relation has not been identified clearly, even though the time series of the relation reflects the upstream/downstream traffic conditions and should be considered in the traffic flow modeling. In this paper the flow-density relation is analyzed dynamically and interpreted as a states diagram. The dynamic flow-density relation is quantified by applying fuzzy logic. The quantified dynamic flow-density relation builds the basis for online application of a macroscopic traffic flow model. The new approach to online modeling of traffic flow applying the dynamic flow-density relation alleviates parameter calibration problems stemming from the static flow-density relation.

Stochastic Traffic Congestion Evaluation of Korean Highway Traffic Information System with Structural Changes

  • Lee, Yongwoong;Jeon, Saebom;Park, Yousung
    • Asia pacific journal of information systems
    • /
    • v.26 no.3
    • /
    • pp.427-448
    • /
    • 2016
  • The stochastic phenomena of traffic network condition, such as traffic speed and density, are affected not only by exogenous traffic control but also by endogenous changes in service time during congestion. In this paper, we propose a mixed M/G/1 queuing model by introducing a condition-varying parameter of traffic congestion to reflect structural changes in the traffic network. We also develop congestion indices to evaluate network efficiency in terms of traffic flow and economic cost in traffic operating system using structure-changing queuing model, and perform scenario analysis according to various traffic network improvement policies. Empirical analysis using Korean highway traffic operating system shows that our suggested model better captures structural changes in the traffic queue. The scenario analysis also shows that occasional reversible lane operation during peak times can be more efficient and feasible than regular lane extension in Korea.

Analysis of the traffic flow using stochastic Petri Nets (스토케스틱 페트리 네트를 이용한 교통 흐름 분석)

  • Cho, Hwon;Ko, In-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1504-1507
    • /
    • 1997
  • In this paper, we investigate a traffic flow modeled by stochastic Petri nets. The model consists of two parts : the traffic flow model and signal controller model. These models are used for analyzing the flow of the traffic intersection. The results of the evaluation are derived from a Petri Net-based simulation package, Greatspn. Through simulation we compare the performances of the pretimed signal controller with those of the trafic-adaptive signal controller.

  • PDF