• 제목/요약/키워드: traditional image

검색결과 1,756건 처리시간 0.029초

브랜드 이미지 상승을 위한 쇼윈도우 디스플레이에 관한 연구 - 여성의류 매장 중심으로 - (A Study on the Show Window Display for a Improving the Brand Image - Focusing on the Career Woman's Dress Shop -)

  • 오승희;한영호
    • 한국실내디자인학회:학술대회논문집
    • /
    • 한국실내디자인학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.110-115
    • /
    • 2005
  • Show window display is a technique of arranging goods for sales promotion, namely, motivating and inducing customers to purchase products. It is not simply exhibiting articles but a technical expression of values retained in exhibited articles and an integrated visual art comprehending color, lighting effect, the customers' angle of vision, differentiation from neighboring stores, harmony with properties, assistive roles of relevant goods, and entire messages provided by these elements. Show window display plays the role of a medium that expresses brand images and attracts consumers. Through the medium, the company's brand image is recognized and the recognition determines the trend of brand sales. Brand images planted to consumers seldom change, and wrong recognition affects not only the brand image but also the company image. The present study purposed to suggest show window display employing brand images different from traditional show window display, to examine the effects of brand images on consumers' intention to purchase, and to propose display design.

  • PDF

적응 이진화를 이용한 지문인식 전처리에 관한 연구 (A Study on the Fingerprint Recognition Preprocessing using adaptive binary method)

  • 조성원;김재민
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.227-230
    • /
    • 2002
  • 지문인식을 위한 중요한 전처리 과정중의 하나는 영상의 이진화 과정이다 이진화 과정은 그레이 레벨의 영상( gray scale input image)을 받아들여 이진의 영상(binary image)으로 만드는 것이다. 이진화 과정에 있어서의 어려운 점은 적절한 임계값(threshold value)을 찾는 것이다. 된 논문에서는 국부적인 융선과 골의 밝기의 특성에 따라 적절한 임계값을 선택하는 적응 이진화 방법을 제시한다. 실험을 통하여 게시된 방법은 기존의 방법과 비교하여 족은 성능을 보여주고 있음을 입증하였다.

이미지의 눈제거를 위한 심층 Resnet (Deep Residual Networks for Single Image De-snowing)

  • 만위국;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.525-528
    • /
    • 2019
  • Atmospheric particle removal is a challenging task and attacks wide interests in computer vision filed. In this paper, we proposed a single image snow removal framework based on deep residual networks. According to the fact that there are various snow sizes in a snow image, the inception module which consists of different filter kernels was adopted to extract multiple resolution features of the input snow image. Except the traditional mean square error loss, the perceptual loss and total variation loss were employed to generate more clean images. Experimental results on synthetic and realistic snow images indicated that the proposed method achieves superior performance in respect of visual perception and objective evaluation.

Mobile Palmprint Segmentation Based on Improved Active Shape Model

  • Gao, Fumeng;Cao, Kuishun;Leng, Lu;Yuan, Yue
    • Journal of Multimedia Information System
    • /
    • 제5권4호
    • /
    • pp.221-228
    • /
    • 2018
  • Skin-color information is not sufficient for palmprint segmentation in complex scenes, including mobile environments. Traditional active shape model (ASM) combines gray information and shape information, but its performance is not good in complex scenes. An improved ASM method is developed for palmprint segmentation, in which Perux method normalizes the shape of the palm. Then the shape model of the palm is calculated with principal component analysis. Finally, the color likelihood degree is used to replace the gray information for target fitting. The improved ASM method reduces the complexity, while improves the accuracy and robustness.

An Effective WSSENet-Based Similarity Retrieval Method of Large Lung CT Image Databases

  • Zhuang, Yi;Chen, Shuai;Jiang, Nan;Hu, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2359-2376
    • /
    • 2022
  • With the exponential growth of medical image big data represented by high-resolution CT images(CTI), the high-resolution CTI data is of great importance for clinical research and diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar to the input one from the large-scale lung CTI database can effectively assist physicians to diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the internal details of the organ. In traditional supervised deep learning networks, the learning of the network relies on the labeling of CTIs which is a very time-consuming task. To address this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments to verify the effectiveness of the WSSENet based on which the CBIR is performed.

A Hybrid Learning Model to Detect Morphed Images

  • Kumari, Noble;Mohapatra, AK
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.364-373
    • /
    • 2022
  • Image morphing methods make seamless transition changes in the image and mask the meaningful information attached to it. This can be detected by traditional machine learning algorithms and new emerging deep learning algorithms. In this research work, scope of different Hybrid learning approaches having combination of Deep learning and Machine learning are being analyzed with the public dataset CASIA V1.0, CASIA V2.0 and DVMM to find the most efficient algorithm. The simulated results with CNN (Convolution Neural Network), Hybrid approach of CNN along with SVM (Support Vector Machine) and Hybrid approach of CNN along with Random Forest algorithm produced 96.92 %, 95.98 and 99.18 % accuracy respectively with the CASIA V2.0 dataset having 9555 images. The accuracy pattern of applied algorithms changes with CASIA V1.0 data and DVMM data having 1721 and 1845 set of images presenting minimal accuracy with Hybrid approach of CNN and Random Forest algorithm. It is confirmed that the choice of best algorithm to find image forgery depends on input data type. This paper presents the combination of best suited algorithm to detect image morphing with different input datasets.

The Improvement of Rough- set Theory Histogram in Color- image Segmentation

  • Zheng, Qi;Lee, Hyo Jong
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.429-430
    • /
    • 2011
  • Roughness set theory is a popular topic to use in color-image segmentation. A new popular color image segmentation algorithm is proposed by scientists with the point using traditional histogram and Histon construct roughness set histogram. But, there is still a problem about that is the correlativity of color vector in roughness set histogram, which take an inactive effect in the process of color-image segmentation. Therefore, this paper represents further research based on this and proposed an improved method proved through lot of experiments. The experimental result reduces the correlativity of color vector in roughness set histogram and calculation time remarkably.

Deep Auto Encoder 를 이용한 아날로그 위성 수신기 지향 항공 영상 향상 방법 (Analog Satellite Receiver Oriented Aerial Image Enhancement Method using Deep Auto Encoders)

  • 드실바 딜루샤;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.52-54
    • /
    • 2022
  • Aerial images are being one of the important aspects of satellite imagery, delivers effective information on landcovers. Their special characteristics includes the viewpoint from space which clarifies data related to land examining processes. Aerial images taken by satellites employed radio waves to wirelessly transmit images to ground stations. Due to transmission errors, images get distorted and unable to perform in landcover examining. This paper proposes an aerial image enhancement method using deep autoencoders. A properly trained autoencoder can enhance an aerial image to a considerable level of improvement. Results showed that the achieved enhancement is better than that was obtained from traditional image denoising methods.

Improved Fuzzy-associated Memory Techniques for Image Recovery

  • Zheng Zhao;Kwang Baek Kim
    • Journal of information and communication convergence engineering
    • /
    • 제22권3호
    • /
    • pp.242-248
    • /
    • 2024
  • This paper introduces an improved fuzzy association memory (IFAM), an advanced FAM method based on the T-conorm probability operator. Specifically, the T-conorm probability operator fuzzifies the input data and performs fuzzy logic operations, effectively handling ambiguity and uncertainty during image restoration, which enhances the accuracy and effectiveness of the restoration results. Experimental results validate the performance of IFAM by comparing it with existing fuzzy association memory techniques. The root mean square error shows that the restoration rate of IFAM reached 80%, compared to only 40% for the traditional fuzzy association memory technique.

Adaptive Importance Channel Selection for Perceptual Image Compression

  • He, Yifan;Li, Feng;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3823-3840
    • /
    • 2020
  • Recently, auto-encoder has emerged as the most popular method in convolutional neural network (CNN) based image compression and has achieved impressive performance. In the traditional auto-encoder based image compression model, the encoder simply sends the features of last layer to the decoder, which cannot allocate bits over different spatial regions in an efficient way. Besides, these methods do not fully exploit the contextual information under different receptive fields for better reconstruction performance. In this paper, to solve these issues, a novel auto-encoder model is designed for image compression, which can effectively transmit the hierarchical features of the encoder to the decoder. Specifically, we first propose an adaptive bit-allocation strategy, which can adaptively select an importance channel. Then, we conduct the multiply operation on the generated importance mask and the features of the last layer in our proposed encoder to achieve efficient bit allocation. Moreover, we present an additional novel perceptual loss function for more accurate image details. Extensive experiments demonstrated that the proposed model can achieve significant superiority compared with JPEG and JPEG2000 both in both subjective and objective quality. Besides, our model shows better performance than the state-of-the-art convolutional neural network (CNN)-based image compression methods in terms of PSNR.