DOI QR코드

DOI QR Code

Improved Fuzzy-associated Memory Techniques for Image Recovery

  • Zheng Zhao (Department of Artificial Intelligence, Silla University) ;
  • Kwang Baek Kim (Department of Artificial Intelligence, Silla University)
  • Received : 2024.08.12
  • Accepted : 2024.08.24
  • Published : 2024.09.30

Abstract

This paper introduces an improved fuzzy association memory (IFAM), an advanced FAM method based on the T-conorm probability operator. Specifically, the T-conorm probability operator fuzzifies the input data and performs fuzzy logic operations, effectively handling ambiguity and uncertainty during image restoration, which enhances the accuracy and effectiveness of the restoration results. Experimental results validate the performance of IFAM by comparing it with existing fuzzy association memory techniques. The root mean square error shows that the restoration rate of IFAM reached 80%, compared to only 40% for the traditional fuzzy association memory technique.

Keywords

Acknowledgement

Following are results of a study on the "Leaders in INdustry-university Cooperation 3.0" Project, supported by the Ministry of Education and National Research Foundation of Korea.

References

  1. D. Shen, G. Wu, and H. I. Suk, "Deep learning in medical image analysis," Annual review of biomedical engineering, vol. 19, no. 1, pp. 221-248, Aug. 2017. DOI: 10.1146/annurev-bioeng-071516-044442.
  2. L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art," IEEE Geoscience and remote sensing magazine, vol. 4, no. 2, pp. 22-40, Jun. 2016. DOI: 10.1109/MGRS.2016.2540798.
  3. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sanchez, "A survey on deep learning in medical image analysis," Medical image analysis, vol. 42, pp. 60-88, Dec. 2017. DOI: 10.1016/j.media.2017.07.005.
  4. V. Wiley and T. Lucas, "Computer vision and image processing: a paper review," International Journal of Artificial Intelligence Research, vol. 2, no. 1, pp. 29-36, Jan. 2018. DOI: 10.29099/ijair.v2i1.42.
  5. B. Jahne, "Digital image processing," in Springer Science & Business Media, 6th ed. Berlin, DE : Springer, 2005. DOI: 10.1007/3-540-27563-0.
  6. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, May 2015. DOI: 10.1038/nature14539.
  7. Y. Yang and H. Wang, "Multi-view clustering: A survey," Big data mining and analytics, vol. 1, no. 2, pp. 83-107, Jun. 2018. DOI: 10.26599/BDMA.2018.9020003.
  8. J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, "Swinir: Image restoration using swin transformer," in Proceedings of the IEEE/CVF international conference on computer vision, Online, pp. 1833-1844, 2021.
  9. A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, "Using deep neural networks for inverse problems in imaging: beyond analytical methods," IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 20-36, Jan. 2018. DOI: 10.1109/MSP.2017.2760358.
  10. M. Bertalmio, "Denoising of photographic images and video", fundamentals, Open challenges and new trends, Berlin, DE: Springer, 2018. DOI: 10.1007/978-3-319-96029-6.
  11. K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising," IEEE transactions on image processing, vol. 26, no. 7, pp. 3142-3155, Jul, 2017. DOI: 10.1109/TIP.2017.2662206.
  12. A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, "Using deep neural networks for inverse problems in imaging: beyond analytical methods," IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 20-36, Jan. 2018. DOI: 10.1109/MSP.2017.2760358.
  13. M. T. McCann, K. H. Jin, and M. Unser, "Convolutional neural networks for inverse problems in imaging: A review," IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 85-95, Nov. 2017. DOI: 10.1109/MSP.2017.2739299.
  14. X. Jin, Z. Wu, Z. Hou, H. Peng, and Y. Zhang, "Dual prior learning for blind and blended image restoration," IEEE Transactions on Image Processing, vol. 31, pp. 1042-1056, Jan. 2021. DOI: 10.1109/TIP.2021.3135482.
  15. J. Liu, Y. Sun, X. Xu, and U. S. Kamilov, "Image restoration using total variation regularized deep image prior," in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, GB, pp. 7715-7719, 2019. DOI: 10.1109/ICASSP.2019.8682856.
  16. S. Weber, "A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms," Fuzzy sets and systems, vol. 11, no. 1-3, pp. 115-134, Mar. 1983. DOI: 10.1016/S0165-0114(83)80073-6.
  17. B. Lautrup, L. K. Hansen, I. Law, N. Morch, C. Svarer, and S. C. Strother, Neural Networks: Computers with Intuition, London, GB: World Scientific, 1990.
  18. K. Nakano, "Association-A model of associative memory," IEEE Transactions on. SMC, vol. 2, no. 3, pp. 331-338, Jul. 1972. DOI: 10.1109/TSMC.1972.4309133.
  19. B. Kosko, "Fuzzy systems as universal approximators," IEEE transactions on computers, vol. 43, no. 11, pp. 1329-1333, Nov. 1994. DOI: 10.1109/12.324566.
  20. H. A. Simon, R. B. Allen, N. J. Belkin, K. M. Ford, A. Newell, J. Pearl, J. M. Prager, and P. Wang, "AI's greatest trends and controversies," IEEE Intelligent Systems and Their Applications, vol. 15, no. 1, pp. 8-17, Jan. 2000. DOI: 10.1109/5254.820322.
  21. M. M. Gupta and J. Qi, "Theory of T-norms and fuzzy inference methods," Fuzzy sets and systems, vol. 40, no. 3, pp. 431-450, Apr. 1991. DOI: 10.1016/0165-0114(91)90171-L.
  22. R. Mesiar, "A note on moderate growth of t-conorms," Fuzzy sets and systems, vol. 122, no. 2, pp. 357-359, Sep. 2001. DOI: 10.1016/S0165-0114(00)00070-1.
  23. S. Weber, "A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms," Fuzzy sets and systems, vol. 11, no. 1-3, pp. 115-134, Mar. 1983. DOI: 10.1016/S0165-0114(83)80073-6.
  24. W. Bandler and L. Kohout, "Fuzzy power sets and fuzzy implication operators," Fuzzy sets and Systems, vol. 4, no. 1, pp. 13-30, Jul. 1980. DOI: 10.1016/0165-0114(80)90060-3.
  25. L. Zhang, L. Zhang, X. Mou, and D. Zhang, "A comprehensive evaluation of full reference image quality assessment algorithms," in 2012 19th IEEE International Conference on Image Processing, Orlando, USA, pp. 1477-1480, Sep. 2012. DOI: 10.1109/ICIP.2012.6467150.