Acknowledgement
Following are results of a study on the "Leaders in INdustry-university Cooperation 3.0" Project, supported by the Ministry of Education and National Research Foundation of Korea.
References
- D. Shen, G. Wu, and H. I. Suk, "Deep learning in medical image analysis," Annual review of biomedical engineering, vol. 19, no. 1, pp. 221-248, Aug. 2017. DOI: 10.1146/annurev-bioeng-071516-044442.
- L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art," IEEE Geoscience and remote sensing magazine, vol. 4, no. 2, pp. 22-40, Jun. 2016. DOI: 10.1109/MGRS.2016.2540798.
- G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sanchez, "A survey on deep learning in medical image analysis," Medical image analysis, vol. 42, pp. 60-88, Dec. 2017. DOI: 10.1016/j.media.2017.07.005.
- V. Wiley and T. Lucas, "Computer vision and image processing: a paper review," International Journal of Artificial Intelligence Research, vol. 2, no. 1, pp. 29-36, Jan. 2018. DOI: 10.29099/ijair.v2i1.42.
- B. Jahne, "Digital image processing," in Springer Science & Business Media, 6th ed. Berlin, DE : Springer, 2005. DOI: 10.1007/3-540-27563-0.
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, May 2015. DOI: 10.1038/nature14539.
- Y. Yang and H. Wang, "Multi-view clustering: A survey," Big data mining and analytics, vol. 1, no. 2, pp. 83-107, Jun. 2018. DOI: 10.26599/BDMA.2018.9020003.
- J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, "Swinir: Image restoration using swin transformer," in Proceedings of the IEEE/CVF international conference on computer vision, Online, pp. 1833-1844, 2021.
- A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, "Using deep neural networks for inverse problems in imaging: beyond analytical methods," IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 20-36, Jan. 2018. DOI: 10.1109/MSP.2017.2760358.
- M. Bertalmio, "Denoising of photographic images and video", fundamentals, Open challenges and new trends, Berlin, DE: Springer, 2018. DOI: 10.1007/978-3-319-96029-6.
- K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising," IEEE transactions on image processing, vol. 26, no. 7, pp. 3142-3155, Jul, 2017. DOI: 10.1109/TIP.2017.2662206.
- A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, "Using deep neural networks for inverse problems in imaging: beyond analytical methods," IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 20-36, Jan. 2018. DOI: 10.1109/MSP.2017.2760358.
- M. T. McCann, K. H. Jin, and M. Unser, "Convolutional neural networks for inverse problems in imaging: A review," IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 85-95, Nov. 2017. DOI: 10.1109/MSP.2017.2739299.
- X. Jin, Z. Wu, Z. Hou, H. Peng, and Y. Zhang, "Dual prior learning for blind and blended image restoration," IEEE Transactions on Image Processing, vol. 31, pp. 1042-1056, Jan. 2021. DOI: 10.1109/TIP.2021.3135482.
- J. Liu, Y. Sun, X. Xu, and U. S. Kamilov, "Image restoration using total variation regularized deep image prior," in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, GB, pp. 7715-7719, 2019. DOI: 10.1109/ICASSP.2019.8682856.
- S. Weber, "A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms," Fuzzy sets and systems, vol. 11, no. 1-3, pp. 115-134, Mar. 1983. DOI: 10.1016/S0165-0114(83)80073-6.
- B. Lautrup, L. K. Hansen, I. Law, N. Morch, C. Svarer, and S. C. Strother, Neural Networks: Computers with Intuition, London, GB: World Scientific, 1990.
- K. Nakano, "Association-A model of associative memory," IEEE Transactions on. SMC, vol. 2, no. 3, pp. 331-338, Jul. 1972. DOI: 10.1109/TSMC.1972.4309133.
- B. Kosko, "Fuzzy systems as universal approximators," IEEE transactions on computers, vol. 43, no. 11, pp. 1329-1333, Nov. 1994. DOI: 10.1109/12.324566.
- H. A. Simon, R. B. Allen, N. J. Belkin, K. M. Ford, A. Newell, J. Pearl, J. M. Prager, and P. Wang, "AI's greatest trends and controversies," IEEE Intelligent Systems and Their Applications, vol. 15, no. 1, pp. 8-17, Jan. 2000. DOI: 10.1109/5254.820322.
- M. M. Gupta and J. Qi, "Theory of T-norms and fuzzy inference methods," Fuzzy sets and systems, vol. 40, no. 3, pp. 431-450, Apr. 1991. DOI: 10.1016/0165-0114(91)90171-L.
- R. Mesiar, "A note on moderate growth of t-conorms," Fuzzy sets and systems, vol. 122, no. 2, pp. 357-359, Sep. 2001. DOI: 10.1016/S0165-0114(00)00070-1.
- S. Weber, "A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms," Fuzzy sets and systems, vol. 11, no. 1-3, pp. 115-134, Mar. 1983. DOI: 10.1016/S0165-0114(83)80073-6.
- W. Bandler and L. Kohout, "Fuzzy power sets and fuzzy implication operators," Fuzzy sets and Systems, vol. 4, no. 1, pp. 13-30, Jul. 1980. DOI: 10.1016/0165-0114(80)90060-3.
- L. Zhang, L. Zhang, X. Mou, and D. Zhang, "A comprehensive evaluation of full reference image quality assessment algorithms," in 2012 19th IEEE International Conference on Image Processing, Orlando, USA, pp. 1477-1480, Sep. 2012. DOI: 10.1109/ICIP.2012.6467150.