• Title/Summary/Keyword: tractor tillage

Search Result 75, Processing Time 0.024 seconds

FFT analysis of load data during field operations using a 75-kW agricultural tractor

  • Ryu, Myong-Jin;Chung, Sun-Ok;Kim, Yong-Joo;Lee, Dae-Hyun;Choi, Chang-Hyun;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Analysis of load data during field operations is highly important for optimum design of power drive lines for agricultural tractor. Objective of the paper was to analyze field load data using FFT to determine frequency and the energy levels of meaningful cyclic patterns. Rotary tillage, plowing, baling, and wrapping operations were selected as major field operations of agricultural tractor. An agricultural tractor with power measurement system was used. The tractor was equipped with strain-gauge sensors to measure torque of four driving axles and a PTO axle, speed sensors to measure rotational speed of the driving axles and an engine shaft, pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to calculate power requirement. In rotary tillage, calculated frequency was decreased as travel speed increased. In baler operation, calculated frequency was increased as PTO speed was increased. The calculated peak frequency levels and expected levels were similar. Results of the study would provide information on power utilization patterns and on better design of power drive lines.

Tractor Design for Rotary Tillage Considering Lift Resistance (상승저항력을 고려한 로터리경운작업을 위한 승용트랙터의 설계)

  • Sakai, J.;Yoon, Y.D.;Choe, J.S.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.344-350
    • /
    • 1993
  • The purpose of this study is to develop design equations to calculate optimum specifications and dimensions such as weight, engine horsepower, etc. of the tractor necessary to perform stable rotary tillage. The main results of this study are as follows. 1. A wheel-lug ought to receive a special resistance in downward direction which resists the lug's upward motion on wet sticky soil surface. The authors introduce a new academic name of the "lift resistance(上昇抵抗力, 상승저항력)" for such a force which resists retraction of a wheel lug from the soil in the upward trochoidal motion. This force is composed of the frictional force acting on the trailing and the leading lug side, and the "perpendicular adhesion(鉛直付着力, 연직부착력)" acting on the lug face and the undertread face on adhesive soil. 2. The "lift resistance ratio(上昇抵抗力係數, 상승저항력계수)" and the "perpendicular adhesion ratio(鉛直付着力係數, 연직부착력계수)" were defined, which are something similar to the definition of the motion resistance ratio, the traction coefficient, etc. 3. The design equation of the optimum weight of a rotary tiller mounted on the tractor derived by calaulating the forces acting on the rotary blades. 4. The design equations to calculate optimum specifications and dimensions such as weight, engine horsepower, etc. of the tractor necessary to perform stable rotary tillage were derived. It becomes clear that the optimum weight of a rotary tiller and a tractor can be estimated in planning design by means of putting about 21 design factors of the target into the equation. These equations are useful for planning design to estimate the optimum dimensions and specifications of a rotary tiller as well as a tractor by the use of known and/or unknown design parameters.

  • PDF

Development of a Path Generation and Tracking Algorithm for a Korean Auto-guidance Tillage Tractor

  • Han, Xiong-Zhe;Kim, Hak-Jin;Moon, Hee-Chang;Woo, Hoon-Je;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: Path planning and tracking algorithms applicable to various agricultural operations, such as tillage, planting, and spraying, are needed to generate steering angles for auto-guidance tractors to track a point ahead on the path. An optimal coverage path algorithm can enable a vehicle to effectively travel across a field by following a sequence of parallel paths with fixed spacing. This study proposes a path generation and tracking algorithm for an auto-guided Korean tractor with a tillage implement that generates a path with C-type turns and follows the generated path in a paddy field. A mathematical model was developed to generate a waypoint path for a tractor in a field. This waypoint path generation model was based on minimum tractor turning radius, waypoint intervals and LBOs (Limit of Boundary Offsets). At each location, the steering angle was calculated by comparing the waypoint angle and heading angle of the tractor. A path following program was developed with Labview-CVI to automatically read the waypoints and generate steering angles for the tractor to proceed to the next waypoint. A feasibility test of the developed program for real-time path tracking was performed with a mobile platform traveling on flat ground. The test results showed that the developed algorithm generated the desired path and steering angles with acceptable accuracy.

Effect of Tillage Methods of Paddy Field on Yearly Changes of Rice Yield and Soil Properties (논의 경운방법이 년차간 벼수량과 토양특성에 미치는 영향)

  • Bong Koo, Hur;Bong Ki, Yun;Kwan Soon, Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.1
    • /
    • pp.109-114
    • /
    • 1996
  • Field experiment was carried out to investigate the annual changes of rice yield and soil properties. Hwaseongbyeo was cultivated by different tillage methods and fertilizer levels for 5 years in the paddy soil. Tilth efficiency of power tiller(PT) rotary plot was higher by 74.8%, but that of tractor tillage plot was lower by 59.0%. Water requirement in depth of no-tillage plots after rice transplanting was highest and also those of the early growing stage was higher than those of the middle growing stage. Rice yield of PT rotary plot by recommended fertilizer application was increased by 17% than that of no-tillage plot by conventional fertilizer application. By the rotary of PT and tractor, rice yield increased by 6-17% than those of no-tillage. In case of cultivating years, rice yield of 2nd year was highest, but that of 4th year was lowest. Soil bulk density and solid phase of no-tillage plot which took not tillage were highest than the other plots. The changes of soil chemical properties in the all treatments had not definite tendency.

  • PDF

Development of a Simulation Model for an 80 kW-class Electric All-Wheel-Drive (AWD) Tractor using Agricultural Workload (농작업 부하 데이터를 활용한 80 kW급 전기구동 AWD 트랙터의 시뮬레이션 모델 개발)

  • Baek, Seung Yun;Kim, Wan Soo;Kim, Yeon Soo;Kim, Yong Joo;Park, Cheol Gyu;An, Su Cheol;Moon, Hee Chang;Kim, Bong Sang
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The aim of this study is to design a simulation model for an electric All-Wheel-Drive (AWD) tractor to evaluate the performance of the selected component and agricultural work ability. The electric AWD tractor consists of four motors independently for each drive wheel, and each motor is combined with an engine generator, a battery pack, and reducers. The torque data of a 78 kW-class tractor was measured during plow tillage and driving operation to develop a workload cycle. A simulation model was developed by using commercial software, Simulation X, and it used the workload as the simulation condition. As a result of simulation analysis, the drive system, including an electric motor and reducers, was able to cope with high load during plow tillage. The SOC (State of Charge) level was influenced by the output power of the motor, and it was maintained in the range of 50~80%. The fuel consumed by the engine was about 18.23 L during working on a total of 8 fields. The electric AWD tractor was able to perform agricultural work for about 7 hours. In the future study, the electric AWD tractor will be developed reflecting the simulation condition. Research on the comparison between the simulation model and the electric AWD tractor should be performed.

Measurement and analysis of tractor emission during plow tillage operation

  • Jun-Ho Lee;Hyeon-Ho Jeon;Seung-Min Baek;Seung-Yun Baek;Wan-Soo Kim;Yong-Joo Kim;Ryu-Gap Lim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.383-394
    • /
    • 2023
  • In Korea, the U.S. Tier-4 Final emission standards have been applied to agricultural machinery since 2015. This study was conducted to analyze the emission characteristics of agricultural tractors during plow tillage operations using PEMS (portable emissions measurement systems). The tractor working speed was set as M2 (5.95 km/h) and M3 (7.60 km/h), which was the most used gear stage during plow tillage operation. An engine idling test was conducted before the plow tillage operation was conducted because the level of emissions differed depending on the temperature of the engine (cold and hot states). The estimated level of emissions for the regular area (660 m2), which was the typical area of cultivation, was based on an implement width of 2.15 m and distance from the work area of 2.2 m. As a result, average emission of CO (carbon monoxide), THC (total hydrocarbons), NOx (nitric oxides), and PM (particulate matter) were approximately 6.17×10-2, 3.36×10-4, 2.01×10-4, and 6.85×10-6 g/s, respectively. Based on the regular area, the total emission of CO, THC, NOx, and PM was 2.62, 3.76×10-2, 1.63, and 2.59×10-4 g, respectively. The results of total emission during plow tillage were compared to Tier 4 emission regulation limits. Tier 4 emission regulation limits means maximum value of the emission per consumption power (g/kWh), calculated as ratio of the emission and consumption power. Therefore, the total emission was converted to the emission per power using the rated power of the tractor. The emission per power was found to be satisfied below Tier 4 emission regulation limits for each emission gas. It is necessary to measure data by applying various test modes in the future and utilize them to calculate emission because the emission depends on various variables such as measurement environment and test mode.

Effect of tractor travelling speed on a tire slip

  • Kim, Yeon Soo;Lee, Sang Dae;Kim, Young Joo;Kim, Yong Joo;Choi, Chang Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.120-127
    • /
    • 2018
  • The rural labor force has gradually been decreasing due to the decrement of the farm population and the increment of the aging population. To solve these problems, it is necessary to develop and study autonomous agricultural machinery. Therefore, analyzing the dynamic behavior of vehicles in an autonomous agricultural environment is important. Until now, most studies on agricultural machinery, especially on ground vehicle dynamics, have been done by field tests. However, these field test methods are time consuming and costly with seasonal restrictions. A research method that can replace existing field test methods by using simulations is needed. In this study, we did basic research analyzing the effect of the travelling speed of a tractor on tire slip using simulation software. A tractor simulation model was developed based on field conditions following a straight path. The simulation was done for three ranges of speed: 20 - 30 km/h (considered the normal travelling speed range), 6 - 8 km/h (considered the plow tillage speed range) and 2 - 4 km/h (considered the rotary tillage speed range). The results of the simulation show that the slip ratio and slip angle values tended to increase as the traveling speed range of the tractor decreased. From the simulation results, it can be concluded that at low tractor speeds, it becomes more difficult to control the vehicle path. In future research, simulations will be done with various work environments such as a curved path as well as with various friction coefficient conditions, and the simulation results will be experimentally verified by applying them to an agricultural tractor.

Development of dynamics simulation model for 3-point hitch of agricultural tractor during plow tillage

  • Mo A Son;Seung Yun Baek;Seung Min Baek;Hyeon Ho Jeon;Ryu Gap Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.937-948
    • /
    • 2022
  • Agricultural operations are performed in uneven environments by attaching an implement on the 3-point hitch of a tractor. A high load is thus placed on the 3-point hitch, and fatigue and failure of the hitch may occur during agricultural operations. In this study, a dynamic simulation model was developed to predict the load occurring on the eyebolt of a 3-point hitch, which is the main damaged component. The simulation model was developed and validated using agricultural data as simulation input and validation data. The dynamics model was developed using the specifications of a 78 kW class tractor. A measurement system was constructed to measure the simulation input and validation data. The simulation model was validated using a traction load on an eye bolt, which was measured during plow tillage operation. The measurement results showed that the average traction load on the left and right lower link and the top link were 8,099.97, 4,943.06, and 636.11 N, respectively. The simulation results and the measured traction load on the left eyebolt were respectively 610.30 and 597.15 N. The simulation results and measured traction load on the left eyebolt were respectively 1,179.78, and 1,145.06 N. The error between the simulation and measurement data was roughly 2% on the left eyebolt and 3% on the right eyebolt.

Tillage Characteristics Estimation of Crank-type and Rotary-type Rotavators by Motion Analysis of Tillage Blades

  • Nam, Ju-Seok;Kim, Dae-Chun;Kim, Myoung-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.279-286
    • /
    • 2012
  • Purpose: This study has been conducted to investigate the applicability of motion analysis of tillage blade for estimation of tillage characteristics of crank-type and rotary-type rotavators. Methods: The interrelation between tillage traces from motion analysis and field test results including rotavating depth, pulverizing ratio and inversion ratio at the same work conditions were analyzed for both crank-type and rotary-type rotavators. The work conditions include working speed of prime mover tractor and PTO speed of rotavators. For the motion analysis, joint conditions of main connecting component were specified considering the actual working mechanism of rotavator. Results: There were important correlations for the trend between motion analysis and field test results. Conclusions: Although further study is needed for applying motion analysis to estimate the accurate tillage related parameters such as rotavating depth, the soil pulverizing ratio and inversion ratio, it could be used to compare the tillage characteristics of various rotavators quickly and simply.