• 제목/요약/키워드: traction force

검색결과 231건 처리시간 0.022초

도시철도차량의 성능 향상을 위한 점착특성 기법에 관한 연구 (A Study on the adhesion characteristic technique for improvement performance of urban rolling stock)

  • 김영춘;전지용
    • 한국산학기술학회논문지
    • /
    • 제7권2호
    • /
    • pp.150-156
    • /
    • 2006
  • 전기철도차량의 성능특성을 향상시키기 위한 효과적인 방법중의 하나는 바퀴와 레일사이의 점착성능을 향상시키는 것이다. 점착특성을 연구하기 위해서 실제 차량을 등가 모델링한 점착시스템을 제작하였다. 이 시스템은 다양한 점착 파라미터를 변화시켜 바퀴와 레일사이의 점착력을 바꿀 수 있도록 제작되었다. 이 논문은 공전속도를 제어하는 기능을 추가하여 점착성능을 향상시키는 연구이다.

  • PDF

Treatment of a Horizontally Impacted and Dilacerated Maxillary Central Incisor and an Impacted Canine

  • Kim, Seong-Hun;Chung, Kyu-Rhim;Hwang, Eui-Hwan;Nelson, Gerald
    • Journal of Korean Dental Science
    • /
    • 제14권1호
    • /
    • pp.40-45
    • /
    • 2021
  • During orthodontic treatment of impacted teeth, use of appropriate anchorage against the traction force is important. Tooth anchorage with multi-bracket appliances is commonly used but sometimes it causes unwanted movements of adjacent teeth. Skeletal anchorage devices are therefore considered to minimize such side effects. Still their survival rate and positioning are highly limited according to the bone density and the interradicular space. This case report presents a case of two impacted teeth, one of which is dilacerated and horizontally angulated. Using the microplate with short screws and a bendable neck, negative effects on adjacent teeth were minimized and impacted teeth were repositioned with good stability.

Dynamics of high-speed train in crosswinds based on an air-train-track interaction model

  • Zhai, Wanming;Yang, Jizhong;Li, Zhen;Han, Haiyan
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.143-168
    • /
    • 2015
  • A numerical model for analyzing air-train-track interaction is proposed to investigate the dynamic behavior of a high-speed train running on a track in crosswinds. The model is composed of a train-track interaction model and a train-air interaction model. The train-track interaction model is built on the basis of the vehicle-track coupled dynamics theory. The train-air interaction model is developed based on the train aerodynamics, in which the Arbitrary Lagrangian-Eulerian (ALE) method is employed to deal with the dynamic boundary between the train and the air. Based on the air-train-track model, characteristics of flow structure around a high-speed train are described and the dynamic behavior of the high-speed train running on track in crosswinds is investigated. Results show that the dynamic indices of the head car are larger than those of other cars in crosswinds. From the viewpoint of dynamic safety evaluation, the running safety of the train in crosswinds is basically controlled by the head car. Compared with the generally used assessment indices of running safety such as the derailment coefficient and the wheel-load reduction ratio, the overturning coefficient will overestimate the running safety of a train on a track under crosswind condition. It is suggested to use the wheel-load reduction ratio and the lateral wheel-rail force as the dominant safety assessment indices when high-speed trains run in crosswinds.

Displacement and stress distribution of the maxillofacial complex during maxillary protraction using palatal plates: A three-dimensional finite element analysis

  • Eom, Jusuk;Bayome, Mohamed;Park, Jae Hyun;Lim, Hee Jin;Kook, Yoon-Ah;Han, Seong Ho
    • 대한치과교정학회지
    • /
    • 제48권5호
    • /
    • pp.304-315
    • /
    • 2018
  • Objective: The purpose of this study was to analyze initial displacement and stress distribution of the maxillofacial complex during dentoskeletal maxillary protraction with various appliance designs placed on the palatal region by using three-dimensional finite element analysis. Methods: Six models of maxillary protraction were developed: conventional facemask (Type A), facemask with dentoskeletal hybrid anchorage (Type B), facemask with a palatal plate (Type C), intraoral traction using a Class III palatal plate (Type D), facemask with a palatal plate combined with rapid maxillary expansion (RME; Type E), and Class III palatal plate intraoral traction with RME (Type F). In Types A, B, C, and D, maxillary protraction alone was performed, whereas in Types E and F, transverse expansion was performed simultaneously with maxillary protraction. Results: Type C displayed the greatest amount of anterior dentoskeletal displacement in the sagittal plane. Types A and B resulted in similar amounts of anterior displacement of all the maxillofacial landmarks. Type D showed little movement, but Type E with expansion and the palatal plate displayed a larger range of movement of the maxillofacial landmarks in all directions. Conclusions: The palatal plate served as an effective skeletal anchor for use with the facemask in maxillary protraction. In contrast, the intraoral use of Class III palatal plates showed minimal skeletal and dental effects in maxillary protraction. In addition, palatal expansion with the protraction force showed minimal effect on the forward movement of the maxillary complex.

동절기 차량의 등판가능성 지표 구축 방안 (A Preliminary Study on Developing a Trafficability Index of Vehicles in Wintertime)

  • 정연식;신강원
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1611-1617
    • /
    • 2013
  • 동절기 도로구간에서 차량의 운행가능성 혹은 등판 가능성 정보는 교통 운영에 매우 중요한 요소이다. 특히, 빙설 구간을 운행할 경우 차량과 노면의 마찰력은 차량의 유형, 도로 기하구조의 특성 및 노면의 특성에 따라 다양하게 나타난다. 일반적으로 노면 결빙(적설)구간에서 트럭과 같은 후륜구동 차량은 전륜구동이나 4륜 구동 차량보다 마찰력이 낮으며, 갑작스런 강설시 이러한 차량의 무리한 도로 운행은 도로의 대규모 혼잡을 발생시키는 주요 원인으로 알려져 왔다. 따라서 도로의 기하구조 및 노면 특성과 차량의 유형에 기반한 실시간 도로 등판가능성 지표의 구축은 동절기 차량 및 도로의 운영 가능성 판단에 기반이 될 것으로 판단되다. 이러한 배경 하에 본 연구는 동절기 도로의 기하구조 및 노면 특성과 차량의 유형에 따른 도로의 운행가능성 지표를 구축방향을 제시하고자 하였다. 비록 제시된 지표는 국내 도로와 차량을 통해 구축된 결과는 아니지만, 향후 동절기 도로 및 차량 운영을 위한 지표 수립의 연구에 유용하게 활용될 것으로 기대된다.

힘/토크 센서를 이용한 수술보조로봇의 원격중심운동 직접교시 알고리즘 연구 (Study on Direct Teaching Algorithm for Remote Center Motion of Surgical Assistant Robot using Force/Torque Sensor)

  • 김민효;진상록
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.309-315
    • /
    • 2020
  • This study shows a control strategy that acquires both precision and manipulation sensitivity of remote center motion with manual traction for a surgical assistant robot. Remote center motion is an essential function of a laparoscopic surgical robot. The robot has to keep the position of the insertion port in a three-dimensional space, and general laparoscopic surgery needs 4-DoF (degree-of-freedom) motions such as pan, tilt, spin, and forward/backward. The proposed robot consists of a 6-axis collaborative robot and a 2-DoF end-effector. A 6-axis collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector maintaining the position of remote center. An end-effector deals with the remaining 2-DoF movement. The most intuitive way a surgeon manipulates a robot is through direct teaching. Since the accuracy of maintaining the remote center position is important, direct teaching is implemented based on position control in this study. A force/torque sensor which is attached to between robot and end-effector estimates the surgeon's intention and generates the command of motion. The predefined remote center position and the pan and tilt angles generated from direct teaching are input as a command for position control. The command generation algorithm determines the direct teaching sensitivity. Required torque for direct teaching and accuracy of remote center motion are analyzed by experiments of panning and tilting motion.

Pipe Bursting 공법의 적용성 검토를 위한 주요 성능평가 항목의 기초실험연구 (A study on the basic experiment of performance criteria for application of pipe bursting method in actual field)

  • 박상봉;김기범;서지원;박상혁;구자용
    • 상하수도학회지
    • /
    • 제32권5호
    • /
    • pp.435-443
    • /
    • 2018
  • Most of aged water supply pipes have been replaced by the open cut method. However, this method has some limitations because water pipes, in many cases, are buried together with other underground facilities or are buried in the middle of high-traffic roads or in narrow alleyways where boring machines cannot be used. This research developed a pipe bursting device for small diameter pipes that enables pipe replacement without excavating the ground, by the busting of existing buried pipes followed by the traction and insertion of new pipes. As a results of examining the field applicability of the developed device, PE pipes and PVC pipes required the tractive force of 413.65~665.69 kgf and 457.43~791.35 kgf respectively, plus an additional 30 % tractive force per elbow. The proper number of bursting head was demonstrated that the connection of more than 2 heads could secure a stable bending radius of 15D. The developed device can be improved through field experiments involving various pipe types and pipe diameters, as well as presence/absence of elbow, so as to be utilized regardless of diverse variables according to the conditions of the soils surrounding existing pipes.

상승저항력을 고려한 로터리경운작업을 위한 승용트랙터의 설계 (Tractor Design for Rotary Tillage Considering Lift Resistance)

  • 사카이 준;윤여두;최중섭;정창주
    • Journal of Biosystems Engineering
    • /
    • 제18권4호
    • /
    • pp.344-350
    • /
    • 1993
  • The purpose of this study is to develop design equations to calculate optimum specifications and dimensions such as weight, engine horsepower, etc. of the tractor necessary to perform stable rotary tillage. The main results of this study are as follows. 1. A wheel-lug ought to receive a special resistance in downward direction which resists the lug's upward motion on wet sticky soil surface. The authors introduce a new academic name of the "lift resistance(上昇抵抗力, 상승저항력)" for such a force which resists retraction of a wheel lug from the soil in the upward trochoidal motion. This force is composed of the frictional force acting on the trailing and the leading lug side, and the "perpendicular adhesion(鉛直付着力, 연직부착력)" acting on the lug face and the undertread face on adhesive soil. 2. The "lift resistance ratio(上昇抵抗力係數, 상승저항력계수)" and the "perpendicular adhesion ratio(鉛直付着力係數, 연직부착력계수)" were defined, which are something similar to the definition of the motion resistance ratio, the traction coefficient, etc. 3. The design equation of the optimum weight of a rotary tiller mounted on the tractor derived by calaulating the forces acting on the rotary blades. 4. The design equations to calculate optimum specifications and dimensions such as weight, engine horsepower, etc. of the tractor necessary to perform stable rotary tillage were derived. It becomes clear that the optimum weight of a rotary tiller and a tractor can be estimated in planning design by means of putting about 21 design factors of the target into the equation. These equations are useful for planning design to estimate the optimum dimensions and specifications of a rotary tiller as well as a tractor by the use of known and/or unknown design parameters.

  • PDF

Transfer case의 구동변환을 위한 유성기어장치 구동부 설계 (Design of Planetary Gear Drive Unit for Drive Conversion of Transfer case)

  • 염광욱
    • 한국가스학회지
    • /
    • 제26권2호
    • /
    • pp.21-26
    • /
    • 2022
  • 사륜구동은 구동력을 4바퀴에 모두 전달하기 때문에 노면과의 접지력이 상승하여 구동력이 상승한다. 하지만 그로 인해 연비가 저하되는 단점을 가지고 있다. 따라서 평소에 이륜구동으로 주행하다가 필요에 의해 선택적 사륜구동으로 변환하는 방법으로 사륜구동을 많이 사용한다. 이러한 선택적 사륜구동은 운전자가 보내는 전기적 신호를 Transfer case에서 기계적으로 바꿔서 구동력을 변환시킨다. 본 연구에서는 전기적 신호를 기계적으로 바꿔주기 위해 모터에 감속기를 적용하여 토크를 증대시켜 기능을 수행하였다. 따라서, 본 연구에서는 구동을 변환시켜주기 위해 적용되는 Transfer case내부에 있는 모터에 적용할 수 있는 감속메커니즘을 도출하고 그에 따른 유성기어형태를 적용한 감속비를 최적화하였다. 그리고 도출된 감속비를 토대로 링기어를 공통으로 사용하는 유성기어 2세트를 적용하여 입력축과 출력축이 동일상에서 감속이 진행되는 유성기어 기어치형의 개발 및 Transfer csae 내에 있는 구동변환장치 구동부의 최적화 설계를 진행하였다.

Nutrient Requirements of Exercising Swamp Buffalo, Bubalus bubalis. II. Details of Work Energy of Cows and Its Relation to Heart Rate

  • Mahardika, I.G.;Sastradipradja, D.;Sutardi, T.;Sumadi, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권7호
    • /
    • pp.1003-1009
    • /
    • 2000
  • Four young swamp buffalo cows of similar age ranging in body weight (W) between 280 to 380 kg and trained for doing physical exercise were used in two consecutive experiments, each using a latin square design, to determine energy expenditure for draught. The experiments consisted of field trials using 4 levels of work load, i.e. no work as control and loads amounting 450 to 500 Newton (N) continuous traction for respectively 1, 2 and 3 h daily for 14 consecutive days for experiment 1, and no work, traction loads equaling 5, 10 and 15% of W for 3 h daily for 14 days for experiment 2. Heart rate during rest and exercise was monitored using PE-3000 HR monitor. Cows were fed only king grass (Penisetum purpuroides) ad libitum and were subjected to balance trials. Body composition was estimated in vivo by the body density method and daily energy expenditure (EE) was calculated from ME minus RE. RE was calculated from the changes in body-protein and -fat measured before and immediately after the 14 d experimental period assuming an energy equivalent of 39.32 MJ/kg fat and 20.07 MJ/kg protein. $E_{exercise}$ ($EE_{work}\;-\;EE_{resting}$), which was the energy spent for doing the traction during 1, 2 and 3 h was 7.13, 15.45 and 19.90 MJ, respectively. $EE_{work}$ for the 1 h treatment group was 39.75 MJ/d equivalent to 1.30 times $EE_{resting}$. The values for the 2 and 3 h treatment groups were 1.75 and 1.86 times resting energy requirement, respectively. Absolute efficiency of work in all exercise trials of experiment 2 was around 27.28%. The increases of daily $E_{exercise}$ values were correlated to elevation of heart rate (HR) according to the equation $E_{exercise}=(0.270HR^{0.363}\;-\;1)$ MJ, while draught force related to heart rate according to the equation DF (N)=6.66 HR - 361.62. Blood glucose and triglyceride levels were gradually elevated with time during the course of exercise. Mean values of blood glucose were 91.7, 115.0 and 116.2 mg/dl for cows after 1, 2 and 3 h pulling loads at 15% W respectively as compared to 88.2 mg/dl prior to work. In the same order and treatment, mean blood triglyceride concentrations were 13.5, 13.3 and 14.8 mg/dl, and 11.5 mg/dl for control. For blood lactate, the values were 1.68, 1.63 and 1.66 mM, and 0.80 mM for control. Glucose was used as the major source of energy during the initial phase of exercise, but for prolonged work, fat will replace carbohydrate as the main substrate. Accumulation of lactate persisted for some time at the end of the exercise trials.