DOI QR코드

DOI QR Code

Displacement and stress distribution of the maxillofacial complex during maxillary protraction using palatal plates: A three-dimensional finite element analysis

  • Eom, Jusuk ;
  • Bayome, Mohamed (Department of Dentistry, College of Medicine, The Catholic University of Korea) ;
  • Park, Jae Hyun (Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University) ;
  • Lim, Hee Jin (Department of Orthodontics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kook, Yoon-Ah (Department of Orthodontics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Han, Seong Ho (Division of Orthodontics, Department of Dentistry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2017.11.15
  • Accepted : 2017.12.08
  • Published : 2018.09.25

Abstract

Objective: The purpose of this study was to analyze initial displacement and stress distribution of the maxillofacial complex during dentoskeletal maxillary protraction with various appliance designs placed on the palatal region by using three-dimensional finite element analysis. Methods: Six models of maxillary protraction were developed: conventional facemask (Type A), facemask with dentoskeletal hybrid anchorage (Type B), facemask with a palatal plate (Type C), intraoral traction using a Class III palatal plate (Type D), facemask with a palatal plate combined with rapid maxillary expansion (RME; Type E), and Class III palatal plate intraoral traction with RME (Type F). In Types A, B, C, and D, maxillary protraction alone was performed, whereas in Types E and F, transverse expansion was performed simultaneously with maxillary protraction. Results: Type C displayed the greatest amount of anterior dentoskeletal displacement in the sagittal plane. Types A and B resulted in similar amounts of anterior displacement of all the maxillofacial landmarks. Type D showed little movement, but Type E with expansion and the palatal plate displayed a larger range of movement of the maxillofacial landmarks in all directions. Conclusions: The palatal plate served as an effective skeletal anchor for use with the facemask in maxillary protraction. In contrast, the intraoral use of Class III palatal plates showed minimal skeletal and dental effects in maxillary protraction. In addition, palatal expansion with the protraction force showed minimal effect on the forward movement of the maxillary complex.

Keywords

References

  1. Baik HS. Clinical results of the maxillary protraction in Korean children. Am J Orthod Dentofacial Orthop 1995;108:583-92. https://doi.org/10.1016/S0889-5406(95)70003-X
  2. Kim JH, Viana MA, Graber TM, Omerza FF, BeGole EA. The effectiveness of protraction face mask therapy: a meta-analysis. Am J Orthod Dentofacial Orthop 1999;115:675-85. https://doi.org/10.1016/S0889-5406(99)70294-5
  3. Singer SL, Henry PJ, Rosenberg I. Osseointegrated implants as an adjunct to facemask therapy: a case report. Angle Orthod 2000;70:253-62.
  4. Hong H, Ngan P, Han G, Qi LG, Wei SH. Use of onplants as stable anchorage for facemask treatment: a case report. Angle Orthod 2005;75:453-60.
  5. Kircelli BH, Pektas ZO. Midfacial protraction with skeletally anchored face mask therapy: a novel approach and preliminary results. Am J Orthod Dentofacial Orthop 2008;133:440-9. https://doi.org/10.1016/j.ajodo.2007.06.011
  6. Baek SH, Kim KW, Choi JY. New treatment modality for maxillary hypoplasia in cleft patients. Protraction facemask with miniplate anchorage. Angle Orthod 2010;80:783-91. https://doi.org/10.2319/073009-435.1
  7. Lee NK, Baek SH. Stress and displacement between maxillary protraction with miniplates placed at the infrazygomatic crest and the lateral nasal wall: a 3-dimensional finite element analysis. Am J Orthod Dentofacial Orthop 2012;141:345-51. https://doi.org/10.1016/j.ajodo.2011.07.021
  8. Han S, Bayome M, Lee J, Lee YJ, Song HH, Kook YA. Evaluation of palatal bone density in adults and adolescents for application of skeletal anchorage devices. Angle Orthod 2012;82:625-31. https://doi.org/10.2319/071311-445.1
  9. Ryu JH, Park JH, Vu Thi Thu T, Bayome M, Kim Y, Kook YA. Palatal bone thickness compared with cone-beam computed tomography in adolescents and adults for mini-implant placement. Am J Orthod Dentofacial Orthop 2012;142:207-12. https://doi.org/10.1016/j.ajodo.2012.03.027
  10. Vu T, Bayome M, Kook YA, Han SH. Evaluation of the palatal soft tissue thickness by cone-beam computed tomography. Korean J Orthod 2012;42:291-6. https://doi.org/10.4041/kjod.2012.42.6.291
  11. Lee SM, Park JH, Bayome M, Kim HS, Mo SS, Kook YA. Palatal soft tissue thickness at different ages using an ultrasonic device. J Clin Pediatr Dent 2012; 36:405-9. https://doi.org/10.17796/jcpd.36.4.58tm38928v522283
  12. Kook YA, Bayome M, Park JH, Kim KB, Kim SH, Chung KR. New approach of maxillary protraction using modified C-palatal plates in Class III patients. Korean J Orthod 2015;45:209-14. https://doi.org/10.4041/kjod.2015.45.4.209
  13. Kim KY, Bayome M, Park JH, Kim KB, Mo SS, Kook YA. Displacement and stress distribution of the maxillofacial complex during maxillary protraction with buccal versus palatal plates: finite element analysis. Eur J Orthod 2015;37:275-83. https://doi.org/10.1093/ejo/cju039
  14. Kook YA, Park JH, Kim Y, Ahn CS, Bayome M. Sagittal correction of adolescent patients with modified palatal anchorage plate appliances. Am J Orthod Dentofacial Orthop 2015;148:674-84. https://doi.org/10.1016/j.ajodo.2015.06.012
  15. Yu HS, Baik HS, Sung SJ, Kim KD, Cho YS. Threedimensional finite-element analysis of maxillary protraction with and without rapid palatal expansion. Eur J Orthod 2007;29:118-25. https://doi.org/10.1093/ejo/cjl057
  16. Park JH, Bayome M, Zahrowski JJ, Kook YA. Displacement and stress distribution by different boneborne palatal expanders with facemask: A 3-dimensional finite element analysis. Am J Orthod Dentofacial Orthop 2017;151:105-17. https://doi.org/10.1016/j.ajodo.2016.06.026
  17. Erkmen E, Simsek B, Yucel E, Kurt A. Three-dimensional finite element analysis used to compare methods of fixation after sagittal split ramus osteotomy: setback surgery-posterior loading. Br J Oral Maxillofac Surg 2005;43:97-104. https://doi.org/10.1016/j.bjoms.2004.10.007
  18. Mahoney E, Holt A, Swain M, Kilpatrick N. The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J Dent 2000;28:589-94. https://doi.org/10.1016/S0300-5712(00)00043-9
  19. Rees JS, Jacobsen PH. Elastic modulus of the periodontal ligament. Biomaterials 1997;18:995-9. https://doi.org/10.1016/S0142-9612(97)00021-5
  20. Farnsworth D, Rossouw PE, Ceen RF, Buschang PH. Cortical bone thickness at common miniscrew implant placement sites. Am J Orthod Dentofacial Orthop 2011;139:495-503. https://doi.org/10.1016/j.ajodo.2009.03.057
  21. Kronfeld R. Histologic study of the influence of function on the human periodontal membrane. J Am Dent Assoc 1931;18:1242-74.
  22. Fricke-Zech S, Gruber RM, Dullin C, Zapf A, Kramer FJ, Kubein-Meesenburg D, et al. Measurement of the midpalatal suture width. Angle Orthod 2012; 82:145-50. https://doi.org/10.2319/040311-238.1
  23. Kook YA, Lee DH, Kim SH, Chung KR. Design improvements in the modified C-palatal plate for molar distalization. J Clin Orthod 2013;47:241-8.
  24. Gautam P, Valiathan A, Adhikari R. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study. Am J Orthod Dentofacial Orthop 2007;132:5.e1-11.
  25. Ngan PW, Hagg U, Yiu C, Wei SH. Treatment response and long-term dentofacial adaptations to maxillary expansion and protraction. Semin Orthod 1997;3:255-64. https://doi.org/10.1016/S1073-8746(97)80058-8
  26. Vaughn GA, Mason B, Moon HB, Turley PK. The effects of maxillary protraction therapy with or without rapid palatal expansion: a prospective, randomized clinical trial. Am J Orthod Dentofacial Orthop 2005; 128:299-309. https://doi.org/10.1016/j.ajodo.2005.04.030
  27. Cevidanes L, Baccetti T, Franchi L, McNamara JA Jr, De Clerck H. Comparison of two protocols for maxillary protraction: bone anchors versus face mask with rapid maxillary expansion. Angle Orthod 2010;80:799-806. https://doi.org/10.2319/111709-651.1
  28. Hino CT, Cevidanes LH, Nguyen TT, De Clerck HJ, Franchi L, McNamara JA Jr. Three-dimensional analysis of maxillary changes associated with facemask and rapid maxillary expansion compared with bone anchored maxillary protraction. Am J Orthod Dentofacial Orthop 2013;144:705-14. https://doi.org/10.1016/j.ajodo.2013.07.011
  29. Elnagar MH, Elshourbagy E, Ghobashy S, Khedr M, Evans CA. Comparative evaluation of 2 skeletally anchored maxillary protraction protocols. Am J Orthod Dentofacial Orthop 2016;150:751-62. https://doi.org/10.1016/j.ajodo.2016.04.025
  30. Gautam P, Valiathan A, Adhikari R. Skeletal response to maxillary protraction with and without maxillary expansion: a finite element study. Am J Orthod Dentofacial Orthop 2009;135:723-8. https://doi.org/10.1016/j.ajodo.2007.06.016
  31. Lee HK, Bayome M, Ahn CS, Kim SH, Kim KB, Mo SS, et al. Stress distribution and displacement by different bone-borne palatal expanders with microimplants: a three-dimensional finite-element analysis. Eur J Orthod 2014;36:531-40. https://doi.org/10.1093/ejo/cjs063

Cited by

  1. Three-dimensional finite element analysis of initial displacement and stress on the craniofacial structures of unilateral cleft lip and palate model during protraction therapy with variable forces and vol.23, pp.16, 2018, https://doi.org/10.1080/10255842.2020.1803844
  2. A Three-Dimensional Finite Element Analysis of Displacement and Stress Distributions of Unilateral and Bilateral Cleft Lips by Using Developed Pre-Surgical Treatment Architecture vol.8, pp.12, 2021, https://doi.org/10.3390/children8121121