• Title/Summary/Keyword: traction control

Search Result 394, Processing Time 0.034 seconds

Inband Signaling on the Control Pilot of Electric Vehicle Supply Equipment (전기자동차 충전스탠드의 제어파일럿 신호를 이용한 대역 내 통신 방식)

  • Kim, Chul-Woo;Kim, Sang-Beom;Lim, You-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2019-2020
    • /
    • 2011
  • Electric Vehicle Supply Equipment(EVSE) is a system or an equipment to supply electric power for charging the traction batteries on the electric vehicle. Control Pilot is an electric signal generated by EVSE and is transmitted to the electric vehicle by a vehicle coupler and a contact. The duty cycle of control pilot determines the maximum current to be drawn by electric vehicle. When the duty cycle is 5%, it is indicated that digital communication is needed. This paper deals with the data format and definition about communication scheduling through the inband signal on the control pilot of EVSE.

  • PDF

Development of Toroidal Type Continuously Variable-Speed Transmission for Agricultural Tractor(2): Control System (트랙터용 토로이달식 무단변속기 개발(2): 제어 시스템)

  • 김의한;이재천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.114-121
    • /
    • 2002
  • This paper describes the control system of the toroidal traction driver continuously variable-speed transmission(CVT) fur a tractor. The instrumentation system, the hydraulic power control system and the principle control scheme were introduced. Experimental tests in the bench and the tractor were conducted to validate the performance of the CVT utilizing the proposed controller. The speed of the vehicle was continuously changed to follow the speed set by driver under various operating conditions. Given the reduction ratio of the variator from 2.0 to 1.0, the settling time was about just 0.52 seconds which was satisfactory value for working with the tractor. It was also proved that the tractor could work with continuously variable speed under heavy load disturbances.

A Method of Hysteresis Modeling and Traction Control for a Piezoelectric Actuator

  • Sung, Baek-Ju;Lee, Eun-Woong;Lee, Jae-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.401-407
    • /
    • 2008
  • The dynamic model and displacement control of piezoelectric actuators, which are commercially available materials for managing extremely small displacements in the range of sub-nanometers, are presented. Piezoceramics have electromechanical characteristics that transduce energy between the electrical and mechanical domains. However, they have hysteresis between the input voltage and output displacement, and this behavior is very demanding and complicated. In this paper, we propose a method of designing the control algorithm, and present the dynamic modeling equations that represent the hysteretic behavior between input voltage and output displacement. For this process, the piezoelectric actuator is treated as a second-order linear dynamic system and system constants are determined by the system identification method. Also, a classical PID controller is designed and used to regulate the output displacement of the actuator. To evaluate the performance of the proposed method, numerical simulation results are presented.

Development of AC Electric Vehicle Propulsion System (Converter/Inverter) using IPM Switching Device (IPM 스위칭 소자를 적용한 AC 전동차 추진제어장치 (Converter/Inverter) 개발)

  • Kim T. Y.;Kno A. S.;Hwang K. C.;Choi J. M.;Kim J. B.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.298-302
    • /
    • 2004
  • In this paper, AC electric vehicle propulsion system(Converter/Inverter) using high power semiconductor, UM(Intelligent Power module) is proposed. 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by experimental results with a 1,350kW converter and 1,100kVA inverter with four 210kW traction motors.

  • PDF

A Study of monitoring system for train communication networks (전동차 차량 네트워크 성능 모니터링 시스템에 관한 연구)

  • Lee, Dae-Eun;Shon, Su-Goog;Shon, Kang-Ho;Jeon, Seong-Joon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1871-1879
    • /
    • 2008
  • A few years ago, The trains had little control equipment so the trains had little data transmission between control equipment. Recently, there is a lot of control equipment in a train as traction control, air conditioners and even internet access. for this reason, vehicle network must allow for the big amount of transmission data and must ensure the high reliability. In this paper we present monitering system for verify high reliability of data transmission of MVB of TCN which is an international standard of IEC 61375.

  • PDF

Development of IPM Propulsion System (Converter/Inverter) for AC Electric Vehicle (교류 전동차용 IPM 주 전력변환장치(Converter/Inverter) 개발)

  • Kim T.Y;Kno A.S;Hwang K.C;Choi J.M
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1437-1443
    • /
    • 2004
  • In this paper, AC electric vehicle propulsion system(Converter/Inverter) using high power semiconductor, IPM(Intelligent Power module) is proposed. 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by experimental results with a 1,350kW converter and 1.100kVA inverter with four 210kW traction motors.

  • PDF

Multi-level Inverter for the Excitation Control of an SRM (SRM의 여자제어를 위한 멀티레벨 인버터)

  • 이상훈;박성준;안진우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.161-169
    • /
    • 2003
  • The applications of SRM(Switched Reluctance motor) are dramatically increasing due to a simple mechanical structure, a high efficiency and a high speed drive characteristics. Energy recovery in the regenerative region is very important when SRM is used in traction drive. This is to reduce energy loss during mechanical braking and/or to have a high efficiency drive. To control excitation voltage during motoring and regenerating voltage in the generator operation in the SRM, multi-level voltage control is effective. This paper suggests multi-level inverter which is useful for motoring and regenerative operation. The proposed method is verified through simulations and experiments.

Multi-level Inverter for the Excitation Control of an SRM (SRM의 여자제어를 위한 멀티레벨 인버터)

  • 이상훈;박성준;안진우
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.161-161
    • /
    • 2003
  • The applications of SRM(Switched Reluctance motor) are dramatically increasing due to a simple mechanical structure, a high efficiency and a high speed drive characteristics. Energy recovery in the regenerative region is very important when SRM is used in traction drive. This is to reduce energy loss during mechanical braking and/or to have a high efficiency drive. To control excitation voltage during motoring and regenerating voltage in the generator operation in the SRM, multi-level voltage control is effective. This paper suggests multi-level inverter which is useful for motoring and regenerative operation. The proposed method is verified through simulations and experiments.

A Study on the Matlab Modeling and Control Algorithm of 8200 Electric Locomotive (8200대 전기기관차 Matlab 모델링 및 제어 알고리즘에 관한 고찰)

  • Lee, Hwan;Jung, No-Geon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.216-221
    • /
    • 2017
  • In this paper, the converter and traction system of 8200 electric locomotive is modeled using matlab simulation module. And the characteristic was analyzed through simulation of the combined system of converter and inverter for controling 8200 electric locomotive. The validity of the simulation was proved through performing unit power factor control of converter and speed control of inverter.

A Study on the adhesion characteristic technique for improvement performance of urban rolling stock (도시철도차량의 성능 향상을 위한 점착특성 기법에 관한 연구)

  • Kim, Young-Choon;Chun, Ji-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.150-156
    • /
    • 2006
  • It is one of the most effective methods for improving the performance of electric railway vehicles to make better the wheel-rail adhesion characteristics. To study adhesion characteristic is to develop the equivalent reduction machine to experiment on the adhesion system. The experiment system makes it possible to change the wheel-rail adhesion force with various adhesion parameters, and therewith to test the adhesion control system with the reduction machine in a laboratory. In this paper, for improving adhesion performance shows actually control methods.

  • PDF