• Title/Summary/Keyword: traction control

Search Result 394, Processing Time 0.023 seconds

The Basic Design of Rubber tire AGT Considering Running Condition (주행조건을 고려한 고무차륜 경량전철의 기본설계)

  • 이은규;김상용;한석윤
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.271-281
    • /
    • 2000
  • A number of variables and environment are concerned for the basic design of train. The design of train ran be optimized by the ruining simulation. And using the simulation result the consuming energy, regenerating power, adhesion coefficient, train traction control capacity are respectable. Considering these variables and for more information operating time, operating period, standard velocity and limit speed, the all factors of train are optimized. The light-tail tram is mainly divided into linear motor train, road surface train, iron wheel train and rubber tire train, and the most profitable one for adhesion coefficient is rubber tire train and the train will be designed.

  • PDF

Vector control of Monorail PMSM traction motor using the hall-effect sensor (홀센서를 이용한 모노레일 PMSM 견인전동기의 벡터제어)

  • Son, Dong-Hyeok;Kim, Myoung-Su;Choi, Da-Woon;Cho, Yun-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1366-1370
    • /
    • 2010
  • This paper supposes the vector control algorithm to estimate the rotor position of permanent magnet synchronous traction motor using the hall-effect sensor. The hall-effect provides 60 electrical degrees resolution in rotor position sensing and it is very low resolution. The algorithm makes resolution high as optical encoders or electromagnetic resolver. If necessary, the reference rotor position angle is controlled by adjusting the variable. When a rotor position sensor such as either a optical encoder or a electromagnetic resolver is misalignment, it is useful to align with those. The method on adjusting the reference rotor position angle can compensate for misalignment error degrees by 60 electrical degrees.

  • PDF

A Propulsion Control System of IGBT Type for Electric Car (전동차용 IGBT형 추진제어장치의 개발)

  • Jeong, M.K.;Lee, K.J.;Bang, L.S.;Song, S.H.;Seo, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.642-645
    • /
    • 1997
  • This paper presents a propulsion control system for electric car to improve traction capability. The presented VVVF inverter was composed of as IGBT and the controller was full digitalized by using 32bit DSP. The improved PWM algorithms was adapted to improve traction characteristics. The system could be possible the higher reliablity, compact, light, low cost' and flexbility.

  • PDF

Traction Motor-Inverter Utilized Battery Charger for PHEVs

  • Woo, Dong-Gyun;Kim, Yun-Sung;Kang, Gu-Bae;Lee, Byoung-Kuk
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.528-535
    • /
    • 2013
  • Most eco-friendly cars can adopt the concept of an integrated battery charger (IBC), which uses currently available motor drive systems. The IBC has a lot of strong points such as low cost and minimum space for the high voltage battery charger. On the other hand, it also has some defects caused by its structure. In this paper, the shortcomings of the conventional IBC for PHEVs with interior permanent magnet motors are discussed, and two advanced IBCs with improved performance are presented. Compared with the conventional IBC, the two advanced IBCs have plenty of strengths such as low common noise, high efficiency, simple sensing methods, etc. Then, the digital control algorithm is modified and a power loss calculation is carried out with simulation software. Finally, experimental results are provided to show the performance of the IBC systems.

A Study on Power Conversion System of the High Speed Train (고속전철 견인용 전력변환장치에 관한 연구)

  • 이병송;박성혁;변윤섭;김명룡;이수길;박현준
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.275-282
    • /
    • 1999
  • This paper presents the current-fed inverter of a TGV-K traction system with thyristor switches using phase control and commutation techniques. The current-fed inverters have two modes of operation which consist of forced commutation and natural commutation. In forced commutation mode, at speed of less than 120km/h, commutation is forced by means of the commutation capacitors and the thyristors. Above 120km/h, the thyristors operate in natural commutation mode, according to the voltages between phases of the motors. In this paper, the power conversion theory of the TGV-K traction system and the control principle of the converter and current-fed inverter are discussed.

  • PDF

Speed Estimation at Coasting Condition in a Sensorless Induction Motor Drive for Railway Vehicle Traction System (철도차량 추진 제어를 위한 유도전동기 센서리스 구동 시스템에서 타행운전시 속도 추정)

  • Kim, Sang-Hoon;Park, Nae-Chun
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.31-35
    • /
    • 2010
  • In this paper, a speed estimation method at coasting operation in an induction motor speed sensorless control for railway vehicle traction systems is presented. At coasting operation, there is no information obtaining rotor speed since all switches of an inverter are turned off. The inverter frequency should be synchronized with the rotor frequency for repowering at coasting condition. The proposed method injects DC current to the induction motor during a short time, then the flux angle and rotor speed needed for control can be estimated rapidly.

  • PDF

BLDC motor control method for hybrid electric vehicle (하이브리드 자동차용 BLDC 전동기 제어 방법)

  • Kang, Sin-Won;Jang, Jong-Hoon;Jeong, Ji-Ye;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.149-151
    • /
    • 2009
  • Hybrid electric vehicle has three operating mode, depending on the operation of the engine and electric motor. According to the speed range of BLDC motor, In hybrid traction mode, both the engine and electric motor deliver to drive train. Battery charge mode, the electric motor operates as generator and is driven by the engine to charge the batteries. In engine alone traction mode, the electric motor is do-energized, and vehicle is propelled by the engine alone. we propose hysteresis current control technique to maintain constant speed in the motor load torque at the reverse direction. The proposed method is verified by using Matlab Simulink software.

  • PDF

Design of the Current and Speed Controller for the IPMSM based High Speed Railway Traction System (IPMSM이 적용된 차세대 고속철도 견인시스템의 전류 및 속도 제어기 설계)

  • Yi, Du-Hee;Jin, Kang-Hwan;Kwon, Soon-Hwan;Kim, Sung-Je;Kim, Yoon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.70-77
    • /
    • 2010
  • This paper presents the current and speed controller design procedure and their performance for the IPMSM based next generation high speed railway traction system. The next generation high speed railway system is a power distributed type and uses vector control method for a motor speed control. Since the speed and current controller gains of the vector control system directly affects to the transient characteristics and speed control capability, the systematic design of the controllers are required. In this paper the controllers are designed using the IPMSM based next generation high speed railway system parameters. Simulation programs based on Matlab/Simulink is developed. Finally the controller characteristics are analyzed by the simulation results.

A Study on the Characteristic of Power Transmission by the Power-take-off(P.T.O.) of farm Tractor (Tractor 동력취출장치(P.T.O.)의 동력전달구조에 관한 연구)

  • 송현갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3089-3095
    • /
    • 1973
  • The power transmission to the traction devices may be very important for the tractor performance and therefore this system has been studied very much in the past. On the other hand, the PTO(Power-take-off) has been considered as an accessary on the tractor with a few work for its power transmission. Because of increased use of PTO operation in various kind of farming operations in recent years, the function of PTO may become such important as the traction facilities. In this study, the power transmission characteristics of PTO drive was analyzed theoretically and some experimental work was done to study on it. The results of the study are as follows: 1) The most stable condition of PTO work was obtained when the intersection angle of the two curves for driving and driven torques was about ${\pi}/2$. 2) To obtain the most stable operation it is better to use both the speed control and the full control together. 3) Six steps differential gear may not be enough to use the PTO power smoothly. It is thought that the three steps differential gear on the shaft of PTO may be necessary additionally for a smooth operation. 4) When the traction facilities and the PTO are used at the same time, the torque of crank shaft becomes Tt + Tp, and the high efficiency and good stability of word will be obtained with the small variation of driving speed. 5) When the tractor was operated with 75% of the rated horse power and 70% of maximum speed, the best thermal efficiency could be obtained. 6) The most dangerous sound for human occured at the rated speed of PTO and tus it may be necessary to control the dangerous noise.

  • PDF

A Study on DC Traction Power Supply System Using PWM Converter (PWM컨버터를 적용한 경전철 전력공급시스템에 관한 연구)

  • Kim, Joorak;Park, Chang-Reung;Park, Kijun;Kim, Joo-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.250-254
    • /
    • 2016
  • Currently, power conversion system which converts AC to DC Power is applied in domestic urban railway. The diode rectifier is used in most of them. However the diode rectifier can not control the output voltage and can not regenerate power as well. On the other hand, PWM (pulse width modulation) converter using IGBT (isolated gate bipolar transistor) can control output voltage, allowing it to reduce the output voltage drop. Moreover the Bi-directional conduction regenerates power which does not require additional device for power regeneration control. This paper compared the simulation results for the DC power supply system on both the diode rectifier and the PWM converter. Under the same load condition, simulation circuit for each power supply system was constructed with the PSIM (performance simulation and modeling tool) software. The load condition was set according to the resistance value of the currently operating impedance of light rail line, and the line impedance was set according to the distance of each substations. The train was set using a passive resistor. PI (proportional integral) controller was applied to regulate the output voltage. PSIM simulation was conducted to verify that the PWM Converter was more efficient than the diode rectifier in DC Traction power supply system.