• Title/Summary/Keyword: tracking servo system

Search Result 243, Processing Time 0.072 seconds

Dual Stage Actuator System for High Density Magnetic Disk Drives Using a Rotary-type Electrostatic Microatuator (회전구동 정전형 마이크로 액추에이터를 이용한 고트랙밀도 HDD용 이단 구동 시스템)

  • Jung Sunghwan;Choi Jae-Joon;Park Jihwang;Lee Chang-Ho;Kim Cheol-Soon;Min Dong-Ki;Kim Young-Hoon;Lee Seung-Hi;Jeon Jong Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.174-185
    • /
    • 2005
  • This paper presents the design, fabrication, and testing results of a dual stage actuator system for a fine positioning of magnetic heads in magnetic disk drives. A novel rotary microactuator which is electrostatically driven and utilized as a secondary actuator was designed. The stator and rotor electrodes in the microactuator was revised to have the optimal shapes and hence produces much higher rotational torque compared with the conventional comb-shape electrodes. The microactuators were successfully fabricated using SoG(silicon on glass) processing technology, which is known as being cost-effective. The fabricated microactuator has the structural thickness of $45{\mu}m$ with the gap width of approximately $3{\mu}m$. The dynamic characteristic of microactuator/slider assembly was investigated, and its natural frequency and DC gain were measured to be 3.4kHz and 32nm/V, respectively. The microactuator/slider assembly was integrated into a HDD model V10 of Samsung Electronics Co. and a dual servo algorithm was tested to explore the tracking performance of dual stage actuator system where the LDV signals instead of magnetic head signals were used. Experimental results indicate that this system achieves the tracking accuracy of 30nm. This value corresponds to a track density of 85,000 track per inch(TPI), which is about 3 times greater than that of current hard disk drives.

Development of the Straightness Compensation System for Ultra-Precision Machine Using DSP (DSP를 이용한 초정밀가공기용 진직도 보상시스템 개발)

  • 이대희;이종호;김호상;민흥기;김민기;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.283-286
    • /
    • 2002
  • This paper presents the straightness compensation system which is a device for improving the machining accuracy of ultra-precision machines by synchronizing the position of diamond tool tip with machine error motion. Sine it is actuated by piezoelectric actuator with highly nonlinear hysteresis characteristics, the feedback control schemes such as Proportional Integral(PI), are required and realized by measuring the displacements of diamond tool tip. for the better tracking performance, the controller was implemented using TMS320C32 32bit floating-point DSP which is fast so that the real-time control is possible. In addition, stand alone type DSP board was chosen fur the easy assembly into the ultra-precision machines. The experimental results show good command tracking performance and the motion error of the machine is satisfactorily compensated during the machining process.

  • PDF

Robust Control for Trajectory Tracking Control of Field Robot (필드로봇의 궤적 추종에 대한 강인제어)

  • 최종환;김승수;양순용;이병룡;안경관;이진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.463-466
    • /
    • 2002
  • The Field Robot means the machinery applied for outdoor tasks in construction, agriculture and undersea etc. In this paper, to field-robotize a hydraulic excavator, we have proposed a robust and systematic controller design method. Disturbance observer is used as inner controller to reshape the excavating system into the linear dynamics of nominal model by compensating coupled nonlinear terms, model uncertainties and external load variations. Using the linear model that is obtained through off-line system identification, a H control scheme is applied to construct a disturbance observer and a servo-controller systematically.

  • PDF

Analysis on the Dynamic Characteristics of an Optical Storage Drive (광 정보저장 드라이브의 동적 특성 해석)

  • Nam, Yoon-Su;Lim, Jong-Rak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.149-158
    • /
    • 1999
  • The modern trends of optical storage devices can be characterized by high density in information recording, and high bandwidth in data input/output processing rate. These make servo engineers to face with a new barrier on control system design in much more difficult way. The first step to attack this barrier will be through a systematic modeling for the dynamic characteristics of optical storage drive. in this paper, an analytical dynamic model for an optical storage drive based on FEM is drived, and compared with experimental results. Through this comparison, a practical dynamic model on the focusing and tracking motion of optical storage drive is proposed for the initiation of real control system design problem.

  • PDF

Development and Performance Tests of the Bridge-Transported Servo Manipulator System for Remote Maintenance Jobs in a Hotcell

  • Jin Jaehyun;Park Byungsuk;Ko Byungseung;Yoon Jisup;Jung Ki-Jung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.257-268
    • /
    • 2005
  • In this paper, a prototype of the Bridge-Transported Servo Manipulator (BTSM) system is introduced, which has been developed to do operation and maintenance jobs remotely in a hot cell. The system consists of a telescopic transporter, a slave arm, a master arm, and a control system. Several tests such as a positional tracking, a weight handling, reliability, and operability have been performed and test results are presented. Based on the test results, an upgraded system which will be used during demonstrations of the advanced spent fuel conditioning process (ACP) has been designed.

  • PDF

Optimal Design of Suspension for Micro Optical Disk Drive (마이크로 광디스크 드라이브 서스펜션의 최적 설계)

  • Jeon, Joon-Ho;Chun, Jung-Il;Park, No-Chul;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.570-575
    • /
    • 2002
  • Servo performance of a disk drive is greatly affected by the mechanical resonance frequencies of the head gimbal assembly (HSA). It is important factor to allow broader bandwidths for servo system in improving overall drive performance. In this paper, an optimal design for ODD suspension is attempted to increase resonance frequencies in tracking direction. Initial model was designed and the design parameter was defined to the model. The mode frequency variation for the change of design parameter was observed by modal analysis using the finite element method(FEM). The sensitivity matrix was calculated from the observed data and so through sensitivity analysis, an optimized ODD suspension was designed to have the higher resonant frequency than the initial model.

  • PDF

Optimal Design of Suspension for Micro Optical Disk Drive (마이크로 광디스크 드라이브 서스펜션의 최적 설계)

  • Jeon, Joon-Ho;Chun, Jeong-Il;Park, No-Chul;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.359.1-359
    • /
    • 2002
  • Servo performance of a disk drive is greatly affected by the mechanical resonance frequencies of the head gimbal assembly(HGA). It is important (actor to allow broader bandwidth for servo system in improving overall drive performance. In this paper, an optimal design for ODD suspension is attempted to increase resonance frequencies. It was decided that the first resonant frequency in tracking direction was higher than 5㎑. (omitted)

  • PDF

Simple Neuro-Controllers for Field-Oriented Induction Motor Servo Drives

  • Fayez F. M.;Sousy, E-I;M. M. Salem
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is studied. A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm with a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two-degree-of-freedom (2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. Simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance. Furthermore, comparing the SNC position controller with the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system.

Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement (독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법)

  • Choi, Myung-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

Asymptotic Disturbance Rejection using a Disturbance Observer in the Track-Following Control System of a High-Speed Optical Disk Drive (고배속 광디스크 드라이브 트랙 추종 제어 시스템에서의 외란 관측기를 이용한 점근적 외란 제거)

  • 유정래;문정호;진경복;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.402-410
    • /
    • 2004
  • To obtain a good tracking performance in an optical disk drive servo system, it is essential to attenuate periodic disturbances caused by eccentric rotation of the disk. As an effective control scheme for enhancing disturbance attenuation performance, disturbance observers (DOBs) have been successfully applied to the track-following servo system of optical disk drives. In disk drive systems, the improvement of data transfer rate has been achieved mainly by the increase of disk rotational speed, which leads to the increase of the disturbance frequency. Conventional DOBs are no longer effective in disk drive systems with a high-speed rotation mechanism because the performance of conventional DOBs is severely degraded as the disk rotational frequency increases. This paper proposes a new DOB structure for effective rejection of the disturbance in optical disk drives with a very high rotation speed. Asymptotic disturbance rejection is achieved by adopting a band-pass filter in the DOB structure, which is tuned based on the information on the disturbance frequency. In addition, performance sensitivity of the proposed DOB to changes in disk rotational frequency is analyzed. The effectiveness of the proposed DOB is verified through simulations and experiments using a DVD-ROM drive.