• 제목/요약/키워드: tracking road

검색결과 215건 처리시간 0.028초

어파인-자기 회귀 모델과 강인 통계를 사용한 교통 표지판 추적 (Road Sign Tracking using Affine-AR Model and Robust Statistics)

  • 윤창용;천민규;이희진;김은태;박민용
    • 대한전자공학회논문지SP
    • /
    • 제46권5호
    • /
    • pp.126-134
    • /
    • 2009
  • 본 논문은 움직이는 차 안에서 교통 표지판을 추적하는 영상 기반 시스템을 기술한다. 제안된 시스템은 복잡한 환경에서 강인한 추적의 성능을 위해 파티클 필터를 기반으로 하는 기본 구조를 가진다. 실제 환경에서 표지판을 실시간으로 추적하는 경우, 장애물에 의한 겹침 현상과 빠르게 변하는 도로 상황 때문에 시계열 데이터인 상태 정보를 예측하는 것은 많은 어려움이 있다. 따라서 본 논문에서는 이러한 단점을 해결하기 위하여 어파인 변환의 파라미터를 상태 정보로 사용한 자기 회귀 모델을 파티클 필터의 상태 전이 모델로써 사용하고, 강인 통계를 사용하여 장애물에 의한 겹침 현상을 판단하여 추적 성능을 향상시키는 알고리즘을 제안한다. 본 논문의 실험 결과에서는 본 논문에서 제안된 방법이 주행 중 실시간 추적을 위하여 효과적이며, 장애물에 의해 표지판이 겹치는 경우에도 추적이 잘 수행됨을 보인다.

딥러닝 기반의 자동차 분류 및 추적 알고리즘 (Vehicle Classification and Tracking based on Deep Learning)

  • 안효창;이용환
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.161-165
    • /
    • 2023
  • One of the difficult works in an autonomous driving system is detecting road lanes or objects in the road boundaries. Detecting and tracking a vehicle is able to play an important role on providing important information in the framework of advanced driver assistance systems such as identifying road traffic conditions and crime situations. This paper proposes a vehicle detection scheme based on deep learning to classify and tracking vehicles in a complex and diverse environment. We use the modified YOLO as the object detector and polynomial regression as object tracker in the driving video. With the experimental results, using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

  • PDF

칼만필터 기반의 도로표지판 추적을 이용한 차량의 횡방향 위치인식 (Lane Positioning in Highways Based on Road-sign Tracking by Kalman Filter)

  • 이재홍;김학일
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.50-59
    • /
    • 2014
  • This paper proposes a method of localization of vehicle especially the horizontal position for the purpose of recognizing the driving lane. Through tracking road signs, the relative position between the vehicle and the sign is calculated and the absolute position is obtained using the known information from the regulation for installation. The proposed method uses Kalman filter for road sign tracking and analyzes the motion using the pinhole camera model. In order to classify the road sign, ORB(Oriented fast and Rotated BRIEF) features from the input image and DB are matched. From the absolute position of the vehicle, the driving lane is recognized. The Experiments are performed on videos from the highway driving and the results shows that the proposed method is able to compensate the common GPS localization errors.

Road Centerline Tracking From High Resolution Satellite Imagery By Least Squares Templates Matching

  • Park, Seung-Ran;Kim, Tae-Jung;Jeong, Soo;Kim, Kyung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.34-39
    • /
    • 2002
  • Road information is very important for topographic mapping, transportation application, urban planning and other related application fields. Therefore, automatic detection of road networks from spatial imagery, such as aerial photos and satellite imagery can play a central role in road information acquisition. In this paper, we use least squares correlation matching alone for road center tracking and show that it works. We assumed that (bright) road centerlines would be visible in the image. We further assumed that within a same road segment, there would be only small differences in brightness values. This algorithm works by defining a template around a user-given input point, which shall lie on a road centerline, and then by matching the template against the image along the orientation of the road under consideration. Once matching succeeds, new match proceeds by shifting a matched target window further along road orientation at the target window. By repeating the process above, we obtain a series of points, which lie on a road centerline successively. A 1m resolution IKONOS images over Seoul and Daejeon were used for tests. The results showed that this algorithm could extract road centerlines in any orientation and help in fast and exact he ad-up digitization/vectorization of cartographic images.

  • PDF

스테레오를 이용한 차량 검출 및 추적 (Vehicle extraction and tracking of stereo)

  • 윤세진;우동민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2962-2964
    • /
    • 1999
  • We know the traffic information about the velocity and position of vehicle by extraction and tracking vehicle from continuosly obtained road image of camera. The conventional method of vehicle detection indicate increment of error due to headlight and taillight in night road image. This paper show such as vehicle detection of binary, Edge detection. amalgamation of image are applied to extract the vehicle, and Kalman filter is adaptive methods for tracking position and velocity of vehicle.

  • PDF

차량 횡방향 운동 방정식을 고려한 차대도로간 트래킹 기법 (A Study on Vehicle to Road Tracking Methodology with Consideration of vehicle lateral dynamics)

  • 신동호
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.219-230
    • /
    • 2017
  • 본 논문에서는 확장형 칼만필터를 적용하여 영상센서 기반 차대도로간 트래킹 알고리즘을 제안한다. 일반적으로 횡방향 오프셋, 차선대비 상대경로각, 전방도로 곡률은 차선유지지원시스템의 경로추종 횡방향 제어기 구성 또는 차선이탈경보시스템의 경보 로직을 위한 중요 입력값으로 활용되는데 이를 위해 본 연구에서는 영상센서 차선인식 결과값인 이미지 상의 차선 추출점의 좌표값과 더불어 요레이트, 조향각, 차속 센서 측정값, 그리고 차량의 횡방향 운동방정식을 고려한 확장형 칼만필터를 적용하여 차대도로간 트래킹 정보를 추출한다. 제안된 차대도로간 트래킹 알고리즘의 유효성을 증명하기 위해 주행 테스트 도로 상에서 DGPS-RTK 장비를 이용하여 비교 검증하여 그 유효성을 보였다.

스테레오 비전 기술을 이용한 도로 표지판의 3차원 추적 (Three Dimensional Tracking of Road Signs based on Stereo Vision Technique)

  • 최창원;최성인;박순용
    • 제어로봇시스템학회논문지
    • /
    • 제20권12호
    • /
    • pp.1259-1266
    • /
    • 2014
  • Road signs provide important safety information about road and traffic conditions to drivers. Road signs include not only common traffic signs but also warning information regarding unexpected obstacles and road constructions. Therefore, accurate detection and identification of road signs is one of the most important research topics related to safe driving. In this paper, we propose a 3-D vision technique to automatically detect and track road signs in a video sequence which is acquired from a stereo vision camera mounted on a vehicle. First, color information is used to initially detect the sign candidates. Second, the SVM (Support Vector Machine) is employed to determine true signs from the candidates. Once a road sign is detected in a video frame, it is continuously tracked from the next frame until it is disappeared. The 2-D position of a detected sign in the next frame is predicted by the 3-D motion of the vehicle. Here, the 3-D vehicle motion is acquired by using the 3-D pose information of the detected sign. Finally, the predicted 2-D position is corrected by template-matching of the scaled template of the detected sign within a window area around the predicted position. Experimental results show that the proposed method can detect and track many types of road signs successfully. Tracking comparisons with two different methods are shown.

Design and implementation of a GIS-based accident management system using tracking technique

  • Niaraki Abolghasem Sadeghi;Kim Kye-Hyun
    • 한국공간정보시스템학회 논문지
    • /
    • 제8권2호
    • /
    • pp.1-11
    • /
    • 2006
  • This paper addresses a GIS (Geographic Information System) based system in order to reduce the rate of public transportation accidents occurring in Iranian roads network. Over the years, the road accidents are a major issue throughout the world. Today, particular consideration is given to those technologies which can lead to diminish on the number of critical incidents. One of the main factors resulting in accidents and fatalities rates growth is the speed violation of buses in Iranian road network. The conventional speed controlling approach in Iran based on the Tachograph which records vehicle's speed, time, and stoppage in the mechanical processing has many problems. Hence, this research is intended to design and implement a GIS-based system to manage road accident of Bus transportation system using offline tracking system. This was accomplished using a GIS-based technique that encompasses three steps. The first step is developing a GIS-based accident system. The second step includes designing and applying a tracking system inside 90 buses for recording Bus information for speed controlling. Lastly, by using mentioned system in police center, the illegal drivers' punishment would be considered properly. Overall, this system has been successfully applied in this work. Therefore, the police and transportation office are able to control and make policy to diminish the number of accident. It is anticipated that online tracking system through the Web GIS would be utilized In this system in the near future.

  • PDF

카메라-라이다 센서 융합을 통한 VRU 분류 및 추적 알고리즘 개발 (Vision and Lidar Sensor Fusion for VRU Classification and Tracking in the Urban Environment)

  • 김유진;이호준;이경수
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.7-13
    • /
    • 2021
  • This paper presents an vulnerable road user (VRU) classification and tracking algorithm using vision and LiDAR sensor fusion method for urban autonomous driving. The classification and tracking for vulnerable road users such as pedestrian, bicycle, and motorcycle are essential for autonomous driving in complex urban environments. In this paper, a real-time object image detection algorithm called Yolo and object tracking algorithm from LiDAR point cloud are fused in the high level. The proposed algorithm consists of four parts. First, the object bounding boxes on the pixel coordinate, which is obtained from YOLO, are transformed into the local coordinate of subject vehicle using the homography matrix. Second, a LiDAR point cloud is clustered based on Euclidean distance and the clusters are associated using GNN. In addition, the states of clusters including position, heading angle, velocity and acceleration information are estimated using geometric model free approach (GMFA) in real-time. Finally, the each LiDAR track is matched with a vision track using angle information of transformed vision track and assigned a classification id. The proposed fusion algorithm is evaluated via real vehicle test in the urban environment.

비디오 영상에서 사전정보 기반의 도로 추적 (Road Tracking based on Prior Information in Video Sequences)

  • 이창우
    • 한국산업정보학회논문지
    • /
    • 제18권2호
    • /
    • pp.19-25
    • /
    • 2013
  • 본 논문에서는 실 도로 환경에서 획득한 영상으로부터 도로 영역을 추적하는 방법을 제안한다. 제안된 방법은 이전 처리 결과로부터 미리 알려진 정보를 이용하여 현재 영상에서 도로를 검출하고 추적하는 방법이다. 제안된 방법은 시스템의 효율을 위해 연속적인 입력 영상에서 하위 60%이내에 도로가 있다고 가정하여 관심의 대상이 되는 영역(Region of Interest, ROI)을 설정하고 이 영역에서만 도로를 검출하고 추적한다. 최초 분할은 플러드필 알고리즘(Flood-fill algorithm)을 수행한 결과로부터 주위 영역과의 유사성을 평가한 후 병합하여 분할한다. 사전 정보로 사용되는 이전 영상에서 분할 결과에서 시드점(Seed Point)을 추출하고 이 시드점을 기준으로 현재 영상을 분할한다. 이전 영상에서 분할된 도로 영역과 현재 영상에서 분할된 결과를 변형된 자카드 계수(Jaccard coefficient)를 이용한 유사도 측정 결과에 따라 다음 영상에서 도로영역을 정제하고 추적한다. 연속적인 입력 영상을 대상으로 실험한 결과는 잡음이 존재하는 영상에서도 도로를 추적하는데 효과적임을 보여준다.