• Title/Summary/Keyword: tracking network

Search Result 1,006, Processing Time 0.033 seconds

Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Yoon-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.111-118
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

Tracking Moving Objects Using Signature-based Data Aggregation in Sensor Network (센서네트워크에서 시그니처 기반 데이터 집계를 이용한 이동객체 트래킹 기법)

  • Kim, Yong-Ki;Kim, Young-Jin;Yoon, Min;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.99-110
    • /
    • 2009
  • Currently, there are many applications being developed based on sensor network technology. A tracking method for moving objects in sensor network is one of the main issue of this field. There is a little research on this issue, but most of the existing work has two problems. The first problem is a communication overhead for visiting sensor nodes many times to track a moving object. The second problem is an disability for dealing with many moving objects at a time. To resolve the problems, we, in this paper, propose a signature-based tracking method using efficient data aggregation for moving objects, called SigMO-TRK. For this, we first design a local routing hierarchy tree to aggregate moving objects' trajectories efficiently by using a space filtering technique. Secondly, we do the tracking of all trajectories of moving objects by using signature in a efficient way, our approach generates signatures to method. In addition, by extending the SigMO-TRK, we can retrieve the similar trajectories of moving objects for given a query. Finally, by using the TOSSIM simulator, we show that our signature-based tracking method outperforms the existing tracking method in terms of energy efficiency.

  • PDF

Neural Network Tracking Control of Rigid-tink Electrically-Driven Robot Manipulators (신경 회로망의 RLED 로봇 머너퓰레이터 추적 제어)

  • 정재욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.74-74
    • /
    • 2000
  • This paper presents a neural network controller for a rigid-link electrically-driven robot. The proposed controller is designed in conjunction with three neural networks approximating for complicated nonlinear functions. Particularly, the fact, different from conventional schemes, is that the neural network based current observer is used. Therefore, no accurate measurement of the actuator driving current is required. In the proposed controller-observer scheme, the derived weight update rule guarantees the stability of closed-loop system in the sense of Lyapunov. The effectiveness and performance of the proposed method are demonstrated through computer simulation.

  • PDF

Autonomous Unmanned Vehicle based Self-locomotion Network for Tracking Targets in Group Mobility (그룹이동타겟 추적을 위한 무인차량기반의 자가이동 네트워크)

  • Tham, Nguyen Thi;Yoon, Seok-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.527-537
    • /
    • 2012
  • In this paper, we propose unmanned vehicle based tracking network (UVTN) architecture and algorithms which employ multiple autonomous unmanned ground vehicles (AUGV) to efficiently follow targets in a group. The goal of UVTN is to maximize the service coverage while tracking target nodes for monitoring or providing the network access. In order to achieve this goal, UVTN performs periodic expansion and contraction which results in optimized redistribution of AUGV's in the network. Also, enhanced algorithms such as fast contraction and longest first are also discussed to improve the performance of UVTN in terms of the average coverage ratio and traveled distance. Simulation results show that the proposed UVTN and enhanced algorithms can effectively track the moving target and provide the consistent coverage.

신경망을 이용한 차동조향 이동로봇의 추적제어

  • 계중읍;김무진;이영진;이만형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.90-101
    • /
    • 2000
  • In this paper, we propose a controller for differentially steered wheeled mobile robots. The controller uses input-output linearization algorithm and artificial neural network to stabilize the dynamic model and compensate uncertainties. The proposed neural network part has 6 inputs, 1 hidden layer, 2 torque outputs and features fast online learning and good performance on structure error learning basis. Simulation results show that the proposed controller perform precisely tracking of reference path and is robust to uncertainties.

  • PDF

Optimal Feedback Control of Available Bit Rate Traffic in ATM using Receding Horizon Control

  • Shin, Soo-Young;Kwon, Wook-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.133-136
    • /
    • 2001
  • In this work, the problem of regulating and tracking available bit rate (ABR) traffic in ATM network. The issue of providing control signals to throttled sources at distant location from bottlenecked node is of particular interest. Network modeling and design of controller is outlined. To obtain optimal control, receding horizon control (RHC) theory is applied. Simulation results are presented in views of regulation and tracking problems with or without constraints.

  • PDF

Research on Objects Tracking System using HOG Algorithm and CNN (HOG 알고리즘과 CNN을 이용한 객체 검출 시스템에 관한 연구)

  • Park Byungjoon;Kim Hyunsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.3
    • /
    • pp.13-23
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis Detecting and tracking objects in continuous video is essential in self-driving cars, security and surveillance systems, sports analytics, medical image processing, and more. Correlation tracking methods such as Normalized Cross Correlation(NCC) and Sum of Absolute Differences(SAD) are used as an effective way to measure the similarity between two images. NCC, a representative correlation tracking method, has been useful in real-time environments because it is relatively simple to compute and effective. However, correlation tracking methods are sensitive to rotation and size changes of objects, making them difficult to apply to real-time changing videos. To overcome these limitations, this paper proposes an object tracking method using the Histogram of Oriented Gradients(HOG) feature to effectively obtain object data and the Convolution Neural Network(CNN) algorithm. By using the two algorithms, the shape and structure of the object can be effectively represented and learned, resulting in more reliable and accurate object tracking. In this paper, the performance of the proposed method is verified through experiments and its superiority is demonstrated.

NEURAL NETWORK CONTROLLER FOR A PERMANENT MAGNET GENERATOR APPLIED IN WIND ENERGY CONVERSION SYSTEM

  • Eskander Mona N.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.656-659
    • /
    • 2001
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system(WECS) employing a permanent magnet synchronous generator, is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-times of the switching devices of the two converters are supplied by the developed neural network(NN). The effect of sudden changes in wind speed ,and/or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simultaneously with the developed neural network controller. The results proved also the fast response and robustness of the proposed control system.

  • PDF

Object Tracking using Feature Map from Convolutional Neural Network (컨볼루션 신경망의 특징맵을 사용한 객체 추적)

  • Lim, Suchang;Kim, Do Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.126-133
    • /
    • 2017
  • The conventional hand-crafted features used to track objects have limitations in object representation. Convolutional neural networks, which show good performance results in various areas of computer vision, are emerging as new ways to break through the limitations of feature extraction. CNN extracts the features of the image through layers of multiple layers, and learns the kernel used for feature extraction by itself. In this paper, we use the feature map extracted from the convolution layer of the convolution neural network to create an outline model of the object and use it for tracking. We propose a method to adaptively update the outline model to cope with various environment change factors affecting the tracking performance. The proposed algorithm evaluated the validity test based on the 11 environmental change attributes of the CVPR2013 tracking benchmark and showed excellent results in six attributes.