• Title/Summary/Keyword: tracking model

Search Result 2,279, Processing Time 0.035 seconds

Location Tracking based on MS-Based/Assisted Location Trigger Model with Context-Awareness

  • Park, Sung-Suk;Lee, Yon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.63-69
    • /
    • 2016
  • In this paper, we proposed the location tracking system based on MS-Based/Assisted(Mobile Station-Based and Assisted) location trigger service model with context-awareness for the intelligent location tracking of moving objects. It provides the proper resulting value that matches the context of users through the analysis about the situation of the user, physical environment, computing resource and the existing information on user input. In order to provide real-time data, we proposed the location tracking system which realizes the intelligent information such as the expecting arrival time and passing the specific area of the moving object by adopting the location trigger. So, it derives to minimize the costs of communication for the mobile object tracking applications. The proposed location tracking system based on context-awareness can be used for realtime monitoring, intelligent alarm/action, setting up of the optimized moving path, dynamic adjustment of strategies and policies. So it has the advantage to develop the application system which is aimed at optimization of the object tracking and movement.

Object Tracking using Color Histogram and CNN Model (컬러 히스토그램과 CNN 모델을 이용한 객체 추적)

  • Park, Sung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • In this paper, we propose an object tracking algorithm based on color histogram and convolutional neural network model. In order to increase the tracking accuracy, we synthesize generic object tracking using regression network algorithm which is one of the convolutional neural network model-based tracking algorithms and a mean-shift tracking algorithm which is a color histogram-based algorithm. Both algorithms are classified through support vector machine and designed to select an algorithm with higher tracking accuracy. The mean-shift tracking algorithm tends to move the bounding box to a large range when the object tracking fails, thus we improve the accuracy by limiting the movement distance of the bounding box. Also, we improve the performance by initializing the tracking start positions of the two algorithms based on the average brightness and the histogram similarity. As a result, the overall accuracy of the proposed algorithm is 1.6% better than the existing generic object tracking using regression network algorithm.

Model-based Body Motion Tracking of a Walking Human (모델 기반의 보행자 신체 추적 기법)

  • Lee, Woo-Ram;Ko, Han-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.75-83
    • /
    • 2007
  • A model based approach of tracking the limbs of a walking human subject is proposed in this paper. The tracking process begins by building a data base composed of conditional probabilities of motions between the limbs of a walking subject. With a suitable amount of video footage from various human subjects included in the database, a probabilistic model characterizing the relationships between motions of limbs is developed. The motion tracking of a test subject begins with identifying and tracking limbs from the surveillance video image using the edge and silhouette detection methods. When occlusion occurs in any of the limbs being tracked, the approach uses the probabilistic motion model in conjunction with the minimum cost based edge and silhouette tracking model to determine the motion of the limb occluded in the image. The method has shown promising results of tracking occluded limbs in the validation tests.

Object detection and tracking using a high-performance artificial intelligence-based 3D depth camera: towards early detection of African swine fever

  • Ryu, Harry Wooseuk;Tai, Joo Ho
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.17.1-17.10
    • /
    • 2022
  • Background: Inspection of livestock farms using surveillance cameras is emerging as a means of early detection of transboundary animal disease such as African swine fever (ASF). Object tracking, a developing technology derived from object detection aims to the consistent identification of individual objects in farms. Objectives: This study was conducted as a preliminary investigation for practical application to livestock farms. With the use of a high-performance artificial intelligence (AI)-based 3D depth camera, the aim is to establish a pathway for utilizing AI models to perform advanced object tracking. Methods: Multiple crossovers by two humans will be simulated to investigate the potential of object tracking. Inspection of consistent identification will be the evidence of object tracking after crossing over. Two AI models, a fast model and an accurate model, were tested and compared with regard to their object tracking performance in 3D. Finally, the recording of pig pen was also processed with aforementioned AI model to test the possibility of 3D object detection. Results: Both AI successfully processed and provided a 3D bounding box, identification number, and distance away from camera for each individual human. The accurate detection model had better evidence than the fast detection model on 3D object tracking and showed the potential application onto pigs as a livestock. Conclusions: Preparing a custom dataset to train AI models in an appropriate farm is required for proper 3D object detection to operate object tracking for pigs at an ideal level. This will allow the farm to smoothly transit traditional methods to ASF-preventing precision livestock farming.

Improvement of Track Tracking Performance Using Deep Learning-based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 항적 추적성능 향상에 관한 연구)

  • Hwang, Jin-Ha;Lee, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.189-192
    • /
    • 2021
  • This study applies a deep learning-based long short-term memory(LSTM) model to track tracking technology. In the case of existing track tracking technology, the weight of constant velocity, constant acceleration, stiff turn, and circular(3D) flight is automatically changed when tracking track in real time using LMIPDA based on Kalman filter according to flight characteristics of an aircraft such as constant velocity, constant acceleration, stiff turn, and circular(3D) flight. In this process, it is necessary to improve performance of changing flight characteristic weight, because changing flight characteristics such as stiff turn flight during constant velocity flight could incur the loss of track and decreasing of the tracking performance. This study is for improving track tracking performance by predicting the change of flight characteristics in advance and changing flight characteristic weigh rapidly. To get this result, this study makes deep learning-based Long Short-Term Memory(LSTM) model study the plot and target of simulator applied with radar error model, and compares the flight tracking results of using Kalman filter with those of deep learning-based Long Short-Term memory(LSTM) model.

  • PDF

Numerical Simulation for Dispersion of Anthropogenic Pollutant in Northern Masan Bay using Particle Tracking Model (입자추적모델을 이용한 마산만 북부 해역에서의 육상오염물질 확산 수치모의)

  • KIM, Jin-Ho;JUNG, Woo-Sung;HONG, Sok-Jin;LEE, Won-Chan;CHUNG, Yong-Hyun;KIM, Dong-Myung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1143-1151
    • /
    • 2016
  • To study the dispersion process and residence time of anthropogenic pollutant in Masan bay, a three-dimensional hydrodynamic model coupled to a particle tracking model, EFDC, is applied. Particle tracking model simulated the instantaneous release of particles emulating discharge from river and wastewater treatment plant to show the behaviour of pollutant in terms of water circulation and water exchange. Modelled outcomes for water circulation were in good agreement with tidal elevation and current data. The results of particle tracking model show that over half of particles released from northern Masan bay transport to out of area while the particles from Dukdong wastewater treatment plant transport to northern area. This meant pollution source from inside and outside of the northern area can affect water quality of northern Masan bay.

ANALYSIS of A VSI-FED INDUCTION MOTOR VECTOR CONTROL with MODEL TRACKING CONTROLLER (전압형 인버터 구동 유도전동기 벡터제어계의 모델추종제어의 해석)

  • Kim, Keun-Ha;Kim, Yong-Ju;Choe, Gyu-Ha;Kim, Han-Sung;Shin, Dae-Cheol;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.347-351
    • /
    • 1990
  • In this paper voltage source inverter(VSI)-fed induction motor vector control system is controlled by a derived model tracking controller. The system analysis is discussed from the viewpoints of ideal vector control, adoption of model tracking controller and derivation of linear model. Furthermore, the result is obtained by the model-tracking control compare with that of P-I, I-P control.

  • PDF

Active Shape Model-based Object Tracking using Depth Sensor (깊이 센서를 이용한 능동형태모델 기반의 객체 추적 방법)

  • Jung, Hun Jo;Lee, Dong Eun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.141-150
    • /
    • 2013
  • This study proposes technology using Active Shape Model to track the object separating it by depth-sensors. Unlike the common visual camera, the depth-sensor is not affected by the intensity of illumination, and therefore a more robust object can be extracted. The proposed algorithm removes the horizontal component from the information of the initial depth map and separates the object using the vertical component. In addition, it is also a more efficient morphology, and labeling to perform image correction and object extraction. By applying Active Shape Model to the information of an extracted object, it can track the object more robustly. Active Shape Model has a robust feature-to-object occlusion phenomenon. In comparison to visual camera-based object tracking algorithms, the proposed technology, using the existing depth of the sensor, is more efficient and robust at object tracking. Experimental results, show that the proposed ASM-based algorithm using depth sensor can robustly track objects in real-time.

Reinforced Feature of Dynamic Search Area for the Discriminative Model Prediction Tracker based on Multi-domain Dataset (다중 도메인 데이터 기반 구별적 모델 예측 트레커를 위한 동적 탐색 영역 특징 강화 기법)

  • Lee, Jun Ha;Won, Hong-In;Kim, Byeong Hak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.323-330
    • /
    • 2021
  • Visual object tracking is a challenging area of study in the field of computer vision due to many difficult problems, including a fast variation of target shape, occlusion, and arbitrary ground truth object designation. In this paper, we focus on the reinforced feature of the dynamic search area to get better performance than conventional discriminative model prediction trackers on the condition when the accuracy deteriorates since low feature discrimination. We propose a reinforced input feature method shown like the spotlight effect on the dynamic search area of the target tracking. This method can be used to improve performances for deep learning based discriminative model prediction tracker, also various types of trackers which are used to infer the center of the target based on the visual object tracking. The proposed method shows the improved tracking performance than the baseline trackers, achieving a relative gain of 38% quantitative improvement from 0.433 to 0.601 F-score at the visual object tracking evaluation.