• Title/Summary/Keyword: tracking model

Search Result 2,279, Processing Time 0.033 seconds

Dynamic Tracking Aggregation with Transformers for RGB-T Tracking

  • Xiaohu, Liu;Zhiyong, Lei
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.80-88
    • /
    • 2023
  • RGB-thermal (RGB-T) tracking using unmanned aerial vehicles (UAVs) involves challenges with regards to the similarity of objects, occlusion, fast motion, and motion blur, among other issues. In this study, we propose dynamic tracking aggregation (DTA) as a unified framework to perform object detection and data association. The proposed approach obtains fused features based a transformer model and an L1-norm strategy. To link the current frame with recent information, a dynamically updated embedding called dynamic tracking identification (DTID) is used to model the iterative tracking process. For object association, we designed a long short-term tracking aggregation module for dynamic feature propagation to match spatial and temporal embeddings. DTA achieved a highly competitive performance in an experimental evaluation on public benchmark datasets.

Target Models in Multi-target Tracking System (다중표적 추적시스템에서의 표적물의 모델)

  • Lee, Yeon-Seok
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.34-42
    • /
    • 1999
  • Multi-target tracking system is defined as tracking several targets simultaneously. Kalman filter is widely used for target tracking problems. Kalman filter is known to be extremely useful as an optimal estimator but has a shortcoming of computational complexity. So a simplified estimator model which had less computational burden is proposed for a real-time implementation of multi-target tracking systems. In this paper, Kalman filter is applied to implement a real-time tracking system with a simplified target model. The proposed Kalman filter model is simpler compared with those of conventional ones, greatly reducing computation time, yet keeping the tracking abilities of the optimal Kalman filter. Through both simulations and experiments with real environments, it is demonstrated that the proposed simplified model works good in real situation with multiple to be tracked.

  • PDF

Robust Online Object Tracking via Convolutional Neural Network (합성곱 신경망을 통한 강건한 온라인 객체 추적)

  • Gil, Jong In;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.186-196
    • /
    • 2018
  • In this paper, we propose an on-line tracking method using convolutional neural network (CNN) for tracking object. It is well known that a large number of training samples are needed to train the model offline. To solve this problem, we use an untrained model and update the model by collecting training samples online directly from the test sequences. While conventional methods have been used to learn models by training samples offline, we demonstrate that a small group of samples are sufficient for online object tracking. In addition, we define a loss function containing color information, and prevent the model from being trained by wrong training samples. Experiments validate that tracking performance is equivalent to four comparative methods or outperforms them.

Robust Visual Tracking for 3-D Moving Object using Kalman Filter (칼만필터를 이용한 3-D 이동물체의 강건한 시각추적)

  • 조지승;정병묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1055-1058
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is the use of different model (CAD model etc.) known a priori. Also fusion or multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Voting-based fusion of cues is adapted. In voting. a very simple or no model is used for fusion. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters. namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF

Model Following Control of Linear Time-Invariant System with Uncertain Time Delay (불확실성 지연시간 시스템의 모델추종제어)

  • Kim, Hye-Kyung;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.786-796
    • /
    • 2014
  • This paper presents a new approach to design a robust tracking controller for linear time-invariant systems with uncertain time-delay. By introducing the model following control (MFC) structure which consists of two loops in nature, we show that the controller is capable of having a predictive control action and effectively tracking the reference output with a desired transient response as well. Three design techniques to achieve good tracking performance are suggested. It is also analytically shown that the tracking performance of the proposed scheme is more robust than that of typical single-loop feedback structure. An illustrative example is given to compare the tracking performances of the proposed methods with a single loop method.

Multiple Cues Based Particle Filter for Robust Tracking (다중 특징 기반 입자필터를 이용한 강건한 영상객체 추적)

  • Hossain, Kabir;Lee, Chi-Woo
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.552-555
    • /
    • 2012
  • The main goal of this paper is to develop a robust visual tracking algorithm with particle filtering. Visual Tracking with particle filter technique is not easy task due to cluttered environment, illumination changes. To deal with these problems, we develop an efficient observation model for target tracking with particle filter. We develop a robust phase correlation combined with motion information based observation model for particle filter framework. Phase correlation provides straight-forward estimation of rigid translational motion between two images, which is based on the well-known Fourier shift property. Phase correlation has the advantage that it is not affected by any intensity or contrast differences between two images. On the other hand, motion cue is also very well known technique and widely used due to its simplicity. Therefore, we apply the phase correlation integrated with motion information in particle filter framework for robust tracking. In experimental results, we show that tracking with multiple cues based model provides more reliable performance than single cue.

Multi-feature local sparse representation for infrared pedestrian tracking

  • Wang, Xin;Xu, Lingling;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1464-1480
    • /
    • 2019
  • Robust tracking of infrared (IR) pedestrian targets with various backgrounds, e.g. appearance changes, illumination variations, and background disturbances, is a great challenge in the infrared image processing field. In the paper, we address a new tracking method for IR pedestrian targets via multi-feature local sparse representation (SR), which consists of three important modules. In the first module, a multi-feature local SR model is constructed. Considering the characterization of infrared pedestrian targets, the gray and edge features are first extracted from all target templates, and then fused into the model learning process. In the second module, an effective tracker is proposed via the learned model. To improve the computational efficiency, a sliding window mechanism with multiple scales is first used to scan the current frame to sample the target candidates. Then, the candidates are recognized via sparse reconstruction residual analysis. In the third module, an adaptive dictionary update approach is designed to further improve the tracking performance. The results demonstrate that our method outperforms several classical methods for infrared pedestrian tracking.

Disturbance Observer- Based Sliding Mode Control for the Precise Mechanical System with the Bristle Friction Model

  • Han, Seong-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.5-14
    • /
    • 2003
  • Tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate fer effects of friction. The conventional SMC method often shows poor tracking performance in high-precision position tracking application since it cannot completely compensate for the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the SMC method combined with the disturbance observer having tunable transient performance. Then this control scheme has the high precise tracking peformance as well as a good transient response when it is compared with the conventional SMC method and the similar types of observers, The experiment on the XY ball-screw drive system with the nonlinear dynamic friction confirms the feasibility of the proposed control scheme.

IMM Method Using Kalman Filter with Fuzzy Gain (퍼지 게인을 갖는 칼만필터를 이용한 IMM 기법)

  • Hoh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.425-428
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, to exactly estimate for each sub-model, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). Finally, the tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and input estimation (IE) method through computer simulations.

  • PDF

Visual Tracking Algorithm Using the Active Bar Models (능동 보모델을 이용한 영상추적 알고리즘)

  • 이진우;이재웅;박광일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1220-1228
    • /
    • 1995
  • In this paper, we consider the problems of tracking an object in a real image. In evaluating these problems, we explore a new technique based on an active contour model commonly called a snake model, and propose the active bar models to represent target. Using this model, we simplified the target welection problems, reduced the search space of energy surface, and obtained the better performances than those of snake model. This approach improves the numerical stability and the tendency for points to bunch up and speed up the computational efficiency. Representing the object by active bar, we can easily obtain the zeroth, the first, and the second moment and it facilitates the target tracking. Finally, we present the good result for the visual tracking problem.