• 제목/요약/키워드: tracking model

Search Result 2,279, Processing Time 2.383 seconds

A Model Predictive Tracking Control Algorithm of Autonomous Truck Based on Object State Estimation Using Extended Kalman Filter (확장 칼만 필터를 이용한 대상 상태 추정 기반 자율주행 대차의 모델 예측 추종 제어 알고리즘)

  • Song, Taejun;Lee, Hyewon;Oh, Kwangseok
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study presented a model predictive tracking control algorithm of autonomous truck based on object state estimation using extended Kalman filter. To design the model, the 1-layer laser scanner was used to estimate position and velocity of the object using extended Kalman filter. Based on these estimations, the desired linear path for object tracking was computed. The lateral and yaw angle errors were computed using the computed linear path and relative positions of the truck. The computed errors were used in the model predictive control algorithm to compute the optimal steering angle for object tracking. The performance evaluation was conducted on Matlab/Simulink environments using planar truck model and actual point data obtained from laser scanner. The evaluation results showed that the tracking control algorithm developed in this study can track the object reasonably based on the model predictive control algorithm based on the estimated states.

Adaptive Color Snake Model for Real-Time Object Tracking

  • Seo, Kap-Ho;Jang, Byung-Gi;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.740-745
    • /
    • 2003
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks suck as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. Snake is designed no the basis of snake energies. Segmenting and tracking can be executed successfully by energy minimization. In this research, two new paradigms for segmentation and tracking are suggested. First, because the conventional method uses only intensity information, it is difficult to separate an object from its complex background. Therefore, a new energy and design schemes should be proposed for the better segmentation of objects. Second, conventional snake can be applied in situations where the change between images is small. If a fast moving object exists in successive images, conventional snake will not operate well because the moving object may have large differences in its position or shape, between successive images. Snakes's nodes may also fall into the local minima in their motion to the new positions of the target object in the succeeding image. For robust tracking, the condensation algorithm was adopted to control the parameters of the proposed snake model called "adaptive color snake model(SCSM)". The effectiveness of the ACSM is verified by appropriate simulations and experiments.

  • PDF

Monitoring and Tracking Model of Logistics Based on ICT network

  • Cho, Sokpal;Chung, Heechang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.489-492
    • /
    • 2016
  • Transportation in the logistics, many business organizations are engaged in monitoring and tracking the vehicles in order to improve logistics services, reduce expenses and secure security in cargo transportation. It is saving time and money by tracking and monitoring vehicles which transport cargo in supply chain of logistics. Therefore the main issue of delivery flow is to improve services, and ensure the safety in transportation system. This article suggests the tracking and monitoring model to keep safety transports on ICT network. It focuses on precise delivery control by monitoring and tracking vehicles to save time and costs. The status of product movement is analyzed for proper decision making. The vehicle embedded with RFID is automatically tracked in the movement process by tracking and monitoring model. The main role keeps safety tracking to reduce costs and to deliver products at proper time and location.

  • PDF

Lightweight high-precision pedestrian tracking algorithm in complex occlusion scenarios

  • Qiang Gao;Zhicheng He;Xu Jia;Yinghong Xie;Xiaowei Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.840-860
    • /
    • 2023
  • Aiming at the serious occlusion and slow tracking speed in pedestrian target tracking and recognition in complex scenes, a target tracking method based on improved YOLO v5 combined with Deep SORT is proposed. By merging the attention mechanism ECA-Net with the Neck part of the YOLO v5 network, using the CIoU loss function and the method of CIoU non-maximum value suppression, connecting the Deep SORT model using Shuffle Net V2 as the appearance feature extraction network to achieve lightweight and fast speed tracking and the purpose of improving tracking under occlusion. A large number of experiments show that the improved YOLO v5 increases the average precision by 1.3% compared with other algorithms. The improved tracking model, MOTA reaches 54.3% on the MOT17 pedestrian tracking data, and the tracking accuracy is 3.7% higher than the related algorithms and The model presented in this paper improves the FPS by nearly 5 on the fps indicator.

Stable Model for Active Contour based Region Tracking using Level Set PDE

  • Lee, Suk-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, we propose a stable active contour based tracking method which utilizes the bimodal segmentation technique to obtain a background color diminished image frame. The proposed method overcomes the drawback of the Mansouri model which is liable to fall into a local minimum state when colors appear in the background that are similar to the target colors. The Mansouri model has been a foundation for active contour based tracking methods, since it is derived from a probability based interpretation. By stabilizing the model with the proposed speed function, the proposed model opens the way to extend probability based active contour tracking for practical applications.

Fuzzy-Model-Based Kalman Filter for Radar Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.311-314
    • /
    • 2003
  • In radar tracking, since the sensor measures range, azimuth and elevation angle of a target, the measurement equation is nonlinear and the extended Kalman filter (EKF) is applied to nonlinear estimation. The conventional EKF has been widely used as a nonlinear filter for radar tracking, but the considerably large measurement error due to the linearization of nonlinear function in highly nonlinear situations may deteriorate the performance of the EKF. To solve this problem, a fuzzy-model-based Kalman filter (FMBKF) is proposed for radar tracking. The FMBKP uses a local model approximation based on a TS fuzzy model instead of a Jacobian matrix to linearize nonlinear measurement equation. The hybrid GA and RLS method is used to identify the premise and the consequent parameters and the rule numbers of this TS fuzzy model. In two-dimensional radar tracking problem, the proposed method is compared with the conventional EKF.

  • PDF

Direct tracking of noncircular sources for multiple arrays via improved unscented particle filter method

  • Yang Qian;Xinlei Shi;Haowei Zeng;Mushtaq Ahmad
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.394-403
    • /
    • 2023
  • Direct tracking problem of moving noncircular sources for multiple arrays is investigated in this study. Here, we propose an improved unscented particle filter (I-UPF) direct tracking method, which combines system proportional symmetry unscented particle filter and Markov Chain Monte Carlo (MCMC) algorithm. Noncircular sources can extend the dimension of sources matrix, and the direct tracking accuracy is improved. This method uses multiple arrays to receive sources. Firstly, set up a direct tracking model through consecutive time and Doppler information. Subsequently, based on the improved unscented particle filter algorithm, the proposed tracking model is to improve the direct tracking accuracy and reduce computational complexity. Simulation results show that the proposed improved unscented particle filter algorithm for noncircular sources has enhanced tracking accuracy than Markov Chain Monte Carlo unscented particle filter algorithm, Markov Chain Monte Carlo extended Kalman particle filter, and two-step tracking method.

Model Tracking Dual Stochastic Controller Design Under Irregular Internal Noises

  • Lee Jong-Bok;Cho Yun-Hyun;Ji Tae-Young;Heo Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.652-657
    • /
    • 2006
  • Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and 1/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation.

Robust Online Object Tracking with a Structured Sparse Representation Model

  • Bo, Chunjuan;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2346-2362
    • /
    • 2016
  • As one of the most important issues in computer vision and image processing, online object tracking plays a key role in numerous areas of research and in many real applications. In this study, we present a novel tracking method based on the proposed structured sparse representation model, in which the tracked object is assumed to be sparsely represented by a set of object and background templates. The contributions of this work are threefold. First, the structure information of all the candidate samples is utilized by a joint sparse representation model, where the representation coefficients of these candidates are promoted to share the same sparse patterns. This representation model can be effectively solved by the simultaneous orthogonal matching pursuit method. In addition, we develop a tracking algorithm based on the proposed representation model, a discriminative candidate selection scheme, and a simple model updating method. Finally, we conduct numerous experiments on several challenging video clips to evaluate the proposed tracker in comparison with various state-of-the-art tracking algorithms. Both qualitative and quantitative evaluations on a number of challenging video clips show that our tracker achieves better performance than the other state-of-the-art methods.

POSE-VIWEPOINT ADAPTIVE OBJECT TRACKING VIA ONLINE LEARNING APPROACH

  • Mariappan, Vinayagam;Kim, Hyung-O;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.20-28
    • /
    • 2015
  • In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.