• Title/Summary/Keyword: tracking model

Search Result 2,279, Processing Time 0.031 seconds

Development of GK2A Convective Initiation Algorithm for Localized Torrential Rainfall Monitoring (국지성 집중호우 감시를 위한 천리안위성 2A호 대류운 전조 탐지 알고리즘 개발)

  • Park, Hye-In;Chung, Sung-Rae;Park, Ki-Hong;Moon, Jae-In
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.489-510
    • /
    • 2021
  • In this paper, we propose an algorithm for detecting convective initiation (CI) using GEO-KOMPSAT-2A/advanced meteorological imager data. The algorithm identifies clouds that are likely to grow into convective clouds with radar reflectivity greater than 35 dBZ within the next two hours. This algorithm is developed using statistical and qualitative analysis of cloud characteristics, such as atmospheric instability, cloud top height, and phase, for convective clouds that occurred on the Korean Peninsula from June to September 2019. The CI algorithm consists of four steps: 1) convective cloud mask, 2) cloud object clustering and tracking, 3) interest field tests, and 4) post-processing tests to remove non-convective objects. Validation, performed using 14 CI events that occurred in the summer of 2020 in Korean Peninsula, shows a total probability of detection of 0.89, false-alarm ratio of 0.46, and mean lead-time of 39 minutes. This algorithm can be useful warnings of rapidly developing convective clouds in future by providing information about CI that is otherwise difficult to predict from radar or a numerical prediction model. This CI information will be provided in short-term forecasts to help predict severe weather events such as localized torrential rainfall and hail.

Synthesis and radiolabeling of PEGylated dendrimer-G2-Gemifloxacin with 99mTc to Biodistribution study in rabbit

  • Mohtavinejad, Naser;Dolatshahi, Shaya;Amanlou, Massoud;Ardestani, Mehdi Shafiee;Asadi, Mehdi;Pormohammad, Ali
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.461-470
    • /
    • 2021
  • Infection is one of the major mortality causes throughout the globe. Nuclear medicine plays an important role in diagnosis of deep infections such as osteomyelitis, arthritis infection, heart valve and heart prosthesis infections. Techniques such as labeled leukocytes are sensitive and selective for tracking the inflammations but they are not suitable for differentiating infection from inflammation. Anionic linear-globular dendrimer-G2 was synthesized then conjugation to gemifloxacin antibiotic. The structures were identified by FT-IR, 1H-NMR, C-NMR, LC-MS and DLS. The toxicity of gemifloxacin and dendrimer-gemifloxacin complex was compared by MTT test. Dendrimer-G2-gemifloxacin was labeled by Technetium-99m and its in-vitro stability and radiochemical purity were investigated. In-vivo biodistribution and SPECT imaging were studied in a rabbit model. Identify and verify the structure of the each object was confirmed by FT-IR, 1H-NMR, C-NMR and LC-MS, also, the size and charge of this compound were 128 nm and -3/68 mv respectively. MTT test showed less toxicity of the dendrimer-G2-gemifloxacin than free gemifluxacin (P < 0.001). Radiochemical yield was > %98. Human serum stability was 84% up to 24 h. Biodistribution study at 50 min, 24 and 48 h showed that the complex is significantly absorbed by the intestine and accumulation in the lungs and affects them, finally excreted through the kidneys, biodistribution results are consistent with results from full image means of SPECT/CT technique.

Simulation of Time-Delay Based Path-Tracking Control of Reusable Launch Vehicle (시간지연기법을 적용한 재사용발사체 유도제어 시뮬레이션)

  • Cho, Woosung;Lee, HyeongJin;Lee, Yeol;Ko, Sangho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.627-636
    • /
    • 2021
  • This paper deals with a study for the guidance control of reusable launch vehicle. For this purpose, modeling of the equation of motion of a reusable launch vehicle with 6 degrees of freedom was performed. With this model, an optimal re-entry path was created and a path-following guidance control simulation was performed to follow the optimal re-entry path. For the design of the path-following guidance controller, the attitude controller applying a time-delay technique that is resistant to modeling uncertainty, disturbance and failure. And the nonlinear path-following guidance law were used. Guidance control simulation using a classical PD controller was performed and compared with the guidance control simulation of a reusable launch vehicle applying a time delay technique.

An Improved ViBe Algorithm of Moving Target Extraction for Night Infrared Surveillance Video

  • Feng, Zhiqiang;Wang, Xiaogang;Yang, Zhongfan;Guo, Shaojie;Xiong, Xingzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4292-4307
    • /
    • 2021
  • For the research field of night infrared surveillance video, the target imaging in the video is easily affected by the light due to the characteristics of the active infrared camera and the classical ViBe algorithm has some problems for moving target extraction because of background misjudgment, noise interference, ghost shadow and so on. Therefore, an improved ViBe algorithm (I-ViBe) for moving target extraction in night infrared surveillance video is proposed in this paper. Firstly, the video frames are sampled and judged by the degree of light influence, and the video frame is divided into three situations: no light change, small light change, and severe light change. Secondly, the ViBe algorithm is extracted the moving target when there is no light change. The segmentation factor of the ViBe algorithm is adaptively changed to reduce the impact of the light on the ViBe algorithm when the light change is small. The moving target is extracted using the region growing algorithm improved by the image entropy in the differential image of the current frame and the background model when the illumination changes drastically. Based on the results of the simulation, the I-ViBe algorithm proposed has better robustness to the influence of illumination. When extracting moving targets at night the I-ViBe algorithm can make target extraction more accurate and provide more effective data for further night behavior recognition and target tracking.

Performance Improvement of RRT* Family Algorithms by Limiting Sampling Range in Circular and Spherical Obstacle Environments (샘플링 범위 제한을 이용한 원 및 구 장애물 환경에서의 RRT* 계열 알고리즘 성능 개량)

  • Lee, Sangil;Park, Jongho;Lim, Jaesung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.809-817
    • /
    • 2022
  • The development of unmanned robots and UAVs has increased the need for path planning methods such as RRT* algorithm. It mostly works well in various environments and is utilized in many fields. A lot of research has been conducted to obtain a better path in terms of efficiency through various modifications to the RRT* algorithm, and the performance of the algorithm is continuously improved thanks to these efforts. In this study, a method using the limitation of sampling range is proposed as an extension of these efforts. Based on the idea that a path passing close to obstacles is similar to the optimal path in obstacle environments, nodes are produced around the obstacle. Also, rewiring algorithm is modified to quickly obtain the path. The performance of the proposed algorithm is validated by comparative analysis of the previous basic algorithm and the generated path is tracked by a UAV's kinematic model for further verification.

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

A Fusion Algorithm of Pure Pursuit and Velocity Planning to Improve the Path Following Performance of Differential Driven Robots in Unstructured Environments (차동 구동형 로봇의 비정형 환경 주행 경로 추종 성능 향상을 위한 Pure pursuit와 속도 계획의 융합 알고리즘)

  • Bongsang Kim;Kyuho Lee;Seungbeom Baek;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.251-259
    • /
    • 2023
  • In the path traveling of differential-drive robots, the steering controller plays an important role in determining the path-following performance. When a robot with a pure-pursuit algorithm is used to continuously drive a right-angled driving path in an unstructured environment without turning in place, the robot cannot accurately follow the right-angled path and stops driving due to the ground and motor load caused by turning. In the case of pure-pursuit, only the current robot position and the steering angle to the current target path point are generated, and the steering component does not reflect the speed plan, which requires improvement for precise path following. In this study, we propose a driving algorithm for differentially driven robots that enables precise path following by planning the driving speed using the radius of curvature and fusing the planned speed with the steering angle of the existing pure-pursuit controller, similar to the Model Predict Control control that reflects speed planning. When speed planning is applied, the robot slows down before entering a right-angle path and returns to the input speed when leaving the right-angle path. The pure-pursuit controller then fuses the steering angle calculated at each path point with the accelerated and decelerated velocity to achieve more precise following of the orthogonal path.

Detection of Smoking Behavior in Images Using Deep Learning Technology (딥러닝 기술을 이용한 영상에서 흡연행위 검출)

  • Dong Jun Kim;Yu Jin Choi;Kyung Min Park;Ji Hyun Park;Jae-Moon Lee;Kitae Hwang;In Hwan Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.107-113
    • /
    • 2023
  • This paper proposes a method for detecting smoking behavior in images using artificial intelligence technology. Since smoking is not a static phenomenon but an action, the object detection technology was combined with the posture estimation technology that can detect the action. A smoker detection learning model was developed to detect smokers in images, and the characteristics of smoking behaviors were applied to posture estimation technology to detect smoking behaviors in images. YOLOv8 was used for object detection, and OpenPose was used for posture estimation. In addition, when smokers and non-smokers are included in the image, a method of separating only people was applied. The proposed method was implemented using Google Colab NVIDEA Tesla T4 GPU in Python, and it was found that the smoking behavior was perfectly detected in the given video as a result of the test.

Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident (헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현)

  • Yong-Hwa Jo;Hyuek-Jae Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2022
  • This paper presents an implementation of detecting whether a helmet is worn and there is a fall accident through individual image analysis in real-time from extracting the image objects of several workers active in the industrial field. In order to detect image objects of workers, YOLO, a deep learning-based computer vision model, was used, and for whether a helmet is worn or not, the extracted images with 5,000 different helmet learning data images were applied. For whether a fall accident occurred, the position of the head was checked using the Pose real-time body tracking algorithm of Mediapipe, and the movement speed was calculated to determine whether the person fell. In addition, to give reliability to the result of a falling accident, a method to infer the posture of an object by obtaining the size of YOLO's bounding box was proposed and implemented. Finally, Telegram API Bot and Firebase DB server were implemented for notification service to administrators.

Control of Quadrotor UAV Using Adaptive Sliding Mode with RBFNN (RBFNN을 가진 적응형 슬라이딩 모드를 이용한 쿼드로터 무인항공기의 제어)

  • Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.185-193
    • /
    • 2022
  • This paper proposes an adaptive sliding mode control with radial basis function neural network(RBFNN) scheme to enhance the performance of position and attitude tracking control of quadrotor UAV. The RBFNN is utilized on the approximation of nonlinear function in the UAV dynmic model and the weights of the RBFNN are adjusted online according to adaptive law from the Lyapunov stability analysis to ensure the state hitting the sliding surface and sliding along it. In order to compensate the network approximation error and eliminate the existing chattering problems, the sliding mode control term is adjusted by adaptive laws, which can enhance the robust performance of the system. The simulation results of the proposed control method confirm the effectiveness of the proposed controller which applied for a nonlinear quadrotor UAV is presented. Form the results, it's shown that the developed control system is achieved satisfactory control performance and robustness.