• Title/Summary/Keyword: tracking model

Search Result 2,279, Processing Time 0.036 seconds

A tracking filter design using input estimation in the 9-state target model (9개의 상태변수 모델에서 기동 입력 추정 기법을 사용한 추적 필터 구성)

  • 황익호;성태경;이장규;이양원;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.114-119
    • /
    • 1991
  • An input estimation technique for tracking filter(CHP algorithm) suggested by Y.T. Chan et. al. has bad performance for low maneuvering targets. In this paper, two maneuver detection algorithms are applied to Singer's target model. First, an CHP input estimation technique is applied to 9 state target model. Second, we construct a maneuver detection and correction technique using pseudo acceleration measurements, which are derived directly from measurements. These two filters have good performance for even the low maneuvering targets.

  • PDF

Robust 3D Hand Tracking based on a Coupled Particle Filter (결합된 파티클 필터에 기반한 강인한 3차원 손 추적)

  • Ahn, Woo-Seok;Suk, Heung-Il;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.80-84
    • /
    • 2010
  • Tracking hands is an essential technique for hand gesture recognition which is an efficient way in Human Computer Interaction (HCI). Recently, many researchers have focused on hands tracking using a 3D hand model and showed robust tracking results compared to using 2D hand models. In this paper, we propose a novel 3D hand tracking method based on a coupled particle filter. This provides robust and fast tracking results by estimating each part of global hand poses and local finger motions separately and then utilizing the estimated results as a prior for each other. Furthermore, in order to improve the robustness, we apply a multi-cue based method by integrating a color-based area matching method and an edge-based distance matching method. In our experiments, the proposed method showed robust tracking results for complex hand motions in a cluttered background.

Face and Hand Tracking Algorithm for Sign Language Recognition (수화 인식을 위한 얼굴과 손 추적 알고리즘)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1071-1076
    • /
    • 2006
  • In this paper, we develop face and hand tracking for sign language recognition system. The system is divided into two stages; the initial and tracking stages. In initial stage, we use the skin feature to localize face and hands of signer. The ellipse model on CbCr space is constructed and used to detect skin color. After the skin regions have been segmented, face and hand blobs are defined by using size and facial feature with the assumption that the movement of face is less than that of hands in this signing scenario. In tracking stage, the motion estimation is applied only hand blobs, in which first and second derivative are used to compute the position of prediction of hands. We observed that there are errors in the value of tracking position between two consecutive frames in which velocity has changed abruptly. To improve the tracking performance, our proposed algorithm compensates the error of tracking position by using adaptive search area to re-compute the hand blobs. The experimental results indicate that our proposed method is able to decrease the prediction error up to 96.87% with negligible increase in computational complexity of up to 4%.

Path Tracking Motion Control using Fuzzy Inference for a Parking-Assist System (퍼지 추론을 이용한 주차지원 시스템의 경로추종 운동제어)

  • Kim, Seung-Ki;Chang, Hyo-Whan;Kim, Chang-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • A parking-assist system is defined that a driver adjusts vehicle velocity through brake pedal operation and parking-assist system controls the motion of the vehicle to follow a collision-free path. In this study, a motion control algorithm using Fuzzy inference is proposed to track a maneuvering clothoid parallel path. Simulations are performed under SIMULINK environments using MATLAB and CarSim for a vehicle model. As the vehicle model in MATLAB a bicycle model is used including lateral dynamics. The simulation results show that the path tracking performance is satisfactory under various driving and initial conditions.

A Path Tracking Control Algorithm for Autonomous Vehicles (자율 주행차량의 경로추종 제어 알고리즘)

  • 안정우;박동진;권태종;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.121-128
    • /
    • 2000
  • In this paper, the control algorithm fur an autonomous vehicle is studied and applied to an actual 2 wheel-driven vehicle system. In order to control a nonholonomic system, the kinematic model for an autonomous vehicle is constructed by relative velocity relationship about the virtual point at distance from the vehicle's frame. And the optimal controller that based on the kinematic model is operated on purpose to track a reference vehicle's path. The actual system is designed with named 'HYAVI' and the system controller is applied. Because all the results of simulation don't satisfy the driving conditions of HYAVI, a reformed control algorithm that satisfies an actual autonomous vehicle is applied at HYAVI. At the results of actual experiments, the path tracking works very well by the reformed control algorithm. An autonomous vehicle that applied this control algorithm can be easily used for a path generation algorithm.

  • PDF

Multiple Axes Position Synchronizing Control of Hydraulic-Cylinder Load System for Clamping Process (클램핑 공정을 위한 유압실린더-부하계의 다축 위치 동기제어)

  • Cho, Seung Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • This paper presents a synchronizing adaptive feedforward control for clamping servomechanism of injection molding machines. Based on MBS, virtual design model has been developed for a direct forcing clamping mechanism. A synchronizing controller is designed and combined with adaptive feedforward control to accommodate mismatches between the real plant and the linear plant model used. From tracking control simulations, it is shown that significant reduction in position tracking error is achieved through the use of proposed control scheme.

Model-Free Torque Control of Rotary Electro-Hydraulic Actuator using Mechanical Impedance Reduction (기계임피던스 감소기법을 이용한 회전형 전기-유압식 구동기의 모델 없는 토크제어방법)

  • Lee, Woongyong;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • This paper proposes a simple and intuitive model-free torque-tracking control for rotary electro-hydraulic actuators. The undesirable natural-velocity-feedback effect is discussed by introducing mechanical impedance into the electro-hydraulic actuation system. The proposed model-free torque control comprises inner- and outer-loop control to achieve two control objectives. Inner-loop control reduces the mechanical impedance passively and optimally. To improve the tracking accuracy, a certain form of proportional-integral-derivative control is applied to the outer loop. The robustness of the proposed closed-loop system against external disturbances is demonstrated by transforming the two-loop control structure into a disturbance observer form. The proposed method is validated on a single joint electro-hydraulic actuator.

A Multi-target Tracking Algorithm for Application to Adaptive Cruise Control

  • Moon Il-ki;Yi Kyongsu;Cavency Derek;Hedrick J. Karl
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1742-1752
    • /
    • 2005
  • This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC) system which consists of three parts; a multi-model-based multi-target state estimator, a primary vehicular target determination algorithm, and a single-target adaptive cruise control algorithm. Three motion models, which are validated using simulated and experimental data, are adopted to distinguish large lateral motions from longitudinally excited motions. The improvement in the state estimation performance when using three models is verified in target tracking simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. The MTT-ACC system is tested under lane changing situations to examine how much the system performance is improved when multiple models are incorporated. Simulation results show system response that is more realistic and reflective of actual human driving behavior.

유니사이클 로봇의 주행경로를 변경하기 위한 퍼지룰의 구성

  • 김중완;안찬우;전언찬;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.761-765
    • /
    • 1997
  • Our study of rider's postulator stability and tracking control on a unicycle began form the observation of a human riding. The system including unicycle and human operationg his unicycle is a fuzzy intelligent biomechanical model on basis of instinct and intuition search mechanisms. We proposed a robotic unicycle with one wheel and one body as a basic mode and derived equation of motion to this model. Our works is in making out fuzzy look-up table to control robotic unicycle. Fuzzy look-up table were determined for staight line and curve under reasonable inference emulating human's instinct and intuition riding a unicyale. Simulation results show that postulator stability and tracking control on both straight line and curve were successful by using proposed each fuzzy look-up table.

  • PDF