• Title/Summary/Keyword: tracking model

Search Result 2,279, Processing Time 0.032 seconds

A object tracking based robot manipulator built on fast stereo vision

  • Huang, Hua;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.99.5-99
    • /
    • 2002
  • $\textbullet$ 3-D object tracking framework $\textbullet$ Using fast stereo vision system for range image $\textbullet$ Using CONDENSATION algorithm to tracking object $\textbullet$ For recognizing object, superquardrics model is used $\textbullet$ Our target object is like coils in steel works

  • PDF

Tracking by Detection of Multiple Faces using SSD and CNN Features

  • Tai, Do Nhu;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop;Oh, A-Ran
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2018
  • Multi-tracking of general objects and specific faces is an important topic in the field of computer vision applicable to many branches of industry such as biometrics, security, etc. The rapid development of deep neural networks has resulted in a dramatic improvement in face recognition and object detection problems, which helps improve the multiple-face tracking techniques exploiting the tracking-by-detection method. Our proposed method uses face detection trained with a head dataset to resolve the face deformation problem in the tracking process. Further, we use robust face features extracted from the deep face recognition network to match the tracklets with tracking faces using Hungarian matching method. We achieved promising results regarding the usage of deep face features and head detection in a face tracking benchmark.

VTG based Moving Target Tracking Performance Improvement Method using MITL System in a Maritime Environment (해상환경에서 MITL 시스템을 활용한 VTG 기반 기동표적 추적성능 개선 기법)

  • Baek, Inhye;Woo, S.H. Arman
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.357-365
    • /
    • 2019
  • In this paper, we suggest the tracking method of moving multi-objects in maritime environments. The image acquisition is conducted using IR(InfraRed) camera sensors on an airborne platform. Under the circumstance of maritime, the qualities of IR images can be significantly degraded due to the clutter influence, which directly gives rise to a tracking loss problem. In order to reduce the effects from the clutters, we introduce a technical approach under Man-In-The-Loop(MITL) system for enhancing the tracking performance. To demonstrate the robustness of the proposed approach based on VTG(Valid Tracking Gate), the simulations are conducted utilizing the airborne IR video sequences: Then, the tracking performances are compared with the existing Kalman Filter tracking techniques.

Design of target state estimator and predictor using multiple model method (다중모델기법을 이용한 표적 상태추정 및 예측기 설계연구)

  • Jung, Sang-Geun;Lee, Sang-Gook;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.478-481
    • /
    • 1996
  • Tracking a target of versatile maneuver recently demands a stable adaptation of tracker, and the multiple model techniques are being developed because of its ability to produce useful information of target maneuver. This paper presents the way to apply the multiple model method in a moving-target and moving-platform scenario, and the estimation and prediction results better than those of single Kalman filter.

  • PDF

Non-parametric Density Estimation with Application to Face Tracking on Mobile Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.49.1-49
    • /
    • 2001
  • The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...

  • PDF

Study on Underwater Object Tracking Based on Real-Time Recurrent Regression Networks Using Multi-beam Sonar Images (실시간 순환 신경망 기반의 멀티빔 소나 이미지를 이용한 수중 물체의 추적에 관한 연구)

  • Lee, Eon-ho;Lee, Yeongjun;Choi, Jinwoo;Lee, Sejin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • This research is a case study of underwater object tracking based on real-time recurrent regression networks (Re3). Re3 has the concept of generic object tracking. Because of these characteristics, it is very effective to apply this model to unclear underwater sonar images. The model also an pursues object tracking method, thus it solves the problem of calculating load that may be limited when object detection models are used, unlike the tracking models. The model is also highly intuitive, so it has excellent continuity of tracking even if the object being tracked temporarily becomes partially occluded or faded. There are 4 types of the dataset using multi-beam sonar images: including (a) dummy object floated at the testbed; (b) dummy object settled at the bottom of the sea; (c) tire object settled at the bottom of the testbed; (d) multi-objects settled at the bottom of the testbed. For this study, the experiments were conducted to obtain underwater sonar images from the sea and underwater testbed, and the validity of using noisy underwater sonar images was tested to be able to track objects robustly.

3-Dimensional Path Planning and Guidance for High Altitude Long Endurance UAV Including a Solar Power Model (태양광 전력모델을 포함한 장기체공 무인기의 3차원 경로계획 및 유도)

  • Oh, Su-hun;Kim, Kap-dong;Park, Jun-hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.401-407
    • /
    • 2016
  • This paper introduces 3-dimensional path planning and guidance including power model for high altitude long endurance (HALE) UAV using solar energy. Dubins curve used in this paper has advantage of being directly available to apply path planning. However, most of the path planning problems using Dubins curve are defined in a two-dimensional plan. So, we used 3-dimensional Dubins path generation algorithm which was studied by Randal W. Beard. The aircraft model which used in this paper does not have an aileron. So we designed lateral controller by using a rudder. And then, we were conducted path tracking simulations by using a nonlinear path tracking algorithm. We generate examples according to altitude conditions. From the path tracking simulation results, we confirm that the path tracking is well on the flight path. Finally, we were modeling the power system of HALE UAVs and conducting path tracking simulation during 48hours. Modeling the amount of power generated by the solar cell through the calculation of the solar energy yield. And, we show the 48hours path tracking simulation results.

Trajectory tracking control system of unmanned ground vehicle (무인자동차 궤적 추적 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Kang, Chin-Chul;Kim, Gwan-Hyung;Tac, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1879-1885
    • /
    • 2017
  • This paper discusses the trajectory tracking system of unmanned ground vehicles based on predictive control. Because the unmanned ground vehicles can not satisfactorily complete the path tracking task, highly efficient and stable trajectory control system is necessary for unmanned ground vehicle to be realized intelligent and practical. According to the characteristics of unmanned vehicle, this paper built the kinematics tracking models firstly. Then studied algorithm solution with the tools of the optimal stability analysis method and proposed a tracking control method based on the model predictive control. The controller used a kinematics-based prediction model to calculate the predictive error. This controller helps the unmanned vehicle drive along the target trajectory quickly and accurately. The designed control strategy has the true robustness, simplicity as well as generality for kinematics model of the unmanned vehicle. Furthermore, the computer Simulink/Carsim results verified the validity of the proposed control method.

IMM Method Using GA-Based Intelligent Input Estimation for Maneuvering target Tracking (기동표적 추적을 위한 유전 알고리즘 기반 지능형 입력추정을 이용한 상호작용 다중모델 기법)

  • 이범직;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.99-102
    • /
    • 2003
  • A new interacting multiple model (IMM) method using genetic algorithm (GA)-based intelligent input estimation(IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The GA is utilized to optimize a fuzzy system fur a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation(IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm (복합모델 다차량 추종 기법을 이용한 차량 주행 제어)

  • Moon, Il-Ki;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF