• 제목/요약/키워드: tracking error

검색결과 1,499건 처리시간 0.021초

Fully Adaptive Feedforward Feedback Synchronized Tracking Control for Stewart Platform Systems

  • Zhao, Dongya;Li, Shaoyuan;Gao, Feng
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.689-701
    • /
    • 2008
  • In this paper, a fully adaptive feedforward feedback synchronized tracking control approach is developed for precision tracking control of 6 degree of freedom (6DOF) Stewart Platform. The proposed controller is designed in decentralized form for implementation simplicity. Interconnections among different subsystems and gravity effect are eliminated by the feedforward control action. Feedback control action guarantees the stability of the system. The gains of the proposed controller can be updated on line without requiring any prior knowledge of Stewart Platform manipulator. Thus the control approach is claimed to be fully adaptive. By employing cross-coupling error technology, the proposed approach can guarantee both of position error and synchronization error converge to zero asymptotically. Because the actuators work in synchronous manner, the tracking performances are improved. The corresponding stability analysis is also presented in this paper. Finally, simulation is demonstrated to verify the effectiveness of the proposed approach.

Control Strategy to Reduce Tracking Error by Impulsive Torques at the Joint

  • Yang Chulho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.61-71
    • /
    • 2005
  • The study reported deals with investigating the feasibility of control strategy for a serial rigid link manipulator that applies impulsive torques at the joints. The strategy is illustrated for a planar three rigid link manipulator. An impulse-based concept which uses successive torque impulses on rigid link as the controller for motion correction was introduced. This control strategy was tested over the entire trajectory to demonstrate that the tracking error could be reduced effectively. The best condition for minimizing the tracking error with the least impulse input at each joint is investigated by considering one design and one operating parameter. The first was the damping in the system, and the second was the sampling time during operation. The results show that this approach can provide useful guidance for the design and control of robot manipulators that require minimum impulse feedback for accurate tracking.

Object Tracking Based on Weighted Local Sub-space Reconstruction Error

  • Zeng, Xianyou;Xu, Long;Hu, Shaohai;Zhao, Ruizhen;Feng, Wanli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.871-891
    • /
    • 2019
  • Visual tracking is a challenging task that needs learning an effective model to handle the changes of target appearance caused by factors such as pose variation, illumination change, occlusion and motion blur. In this paper, a novel tracking algorithm based on weighted local sub-space reconstruction error is presented. First, accounting for the appearance changes in the tracking process, a generative weight calculation method based on structural reconstruction error is proposed. Furthermore, a template update scheme of occlusion-aware is introduced, in which we reconstruct a new template instead of simply exploiting the best observation for template update. The effectiveness and feasibility of the proposed algorithm are verified by comparing it with some state-of-the-art algorithms quantitatively and qualitatively.

CNC 공작기계에서 상호결합제어기를 위한 새로운 윤곽오차모델 (A New Contour Error Model for Cross-Coupled Controller in CNC Machine Tools)

  • 이재하;양승한
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.152-157
    • /
    • 2000
  • In the control of CNC machine tools, it is significant for precise machining to reduce the contour error. The object of servo-control is reduction of contour error and tracking error. In past studies, there were two approaches to control a servo-system. One was to eliminate axial tracking errors, and the other was to control contour errors. The Cross-coupled controller(CCC) was introduced fro ma veiwpoint of contour error model. Recently, for machining part with free form surfaces, we propose a new contour error model based on curve interpolator. It is presented here that performance of CCC using proposed model is enhanced. Therefore, we can make more precise parts with the curve interpolator and the new contour error model.

  • PDF

Tip Position Control of a Flexible-Link Manipulator with Neural Networks

  • Tang Yuan-Gang;Sun Fu-Chun;Sun Zeng-Qi;Hu Ting-Liang
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.308-317
    • /
    • 2006
  • To control the tip position of a flexible-link manipulator, a neural network (NN) controller is proposed in this paper. The dynamics error used to construct NN controller is derived based on output redefinition approach. Without the filtered tracking error, the proposed NN controller can still guarantee the closed-loop system uniformly asymptotically stable as well as NN weights bounded. Furthermore, the tracking error of desired trajectory can converge to zero with the proposed controller. For comparison an NN controller with filtered tracking error is also designed for the flexible-link manipulator. Finally, simulation studies are carried out to verify the theoretic results.

광디스크 드라이브를 위한 강인 제어기 설계 (Robust Servo System for Optical Disk Drive Systems)

  • 박범호;정정주;백종식
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권1호
    • /
    • pp.1-10
    • /
    • 2005
  • This paper proposes a new and simple input prediction method for robust servo system. A robust tracking control system for optical disk drives was proposed recently based on both Coprime Factorization (CF) and Zero Phase Error Tracking (ZPET) control. The CF control system can be designed simply and systematically. Moreover, this system has not only stability but also robustness to parameter uncertainties and disturbance rejection capability. Since optical disk tracking servo system can detect only tracking error, it was proposed that the reference input signal for ZPET could be estimated from tracking errors. In this paper, we propose a new control structure for the ZPET controller. It requires less memory than the previously proposed method for the reference signal generation. Numerical simulation results show that the proposed method is effective.

Effect of Imperfect Power Control on Performance of a PN Code Tracking Loop for a DS/CDMA System

  • Kim, Jin-Young
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(1)
    • /
    • pp.209-212
    • /
    • 2000
  • In this paper, effect of imperfect power control on performance of a pseudonoise (PN) code tracking loop is analyzed and simulated for a direct-sequence/code-division multiple access (DS/CDMA) system. The multipath fading channel is modeled as a two-ray Rayleigh fading model. Power control error is modeled as a log-normally distributed random variable. The tracking performance of DLL (delay-locked-loop) is evaluated in terms of tracking jitter and mean-time-to-lose-lock (MTLL). From the simulation results, it is shown that the PN tracking performance is very sensitive to the power control error.

  • PDF

Maneuvering Target Tracking Using Error Monitoring

  • Fang, Tae-Hyun;Park, Jae-Weon;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.329-334
    • /
    • 1998
  • This work is concerned with the problem of tracking a maneuvering target. In this paper, an error monitoring and recovery method of perception net is utilized to improve tracking performance for a highly maneuvering tar-get. Many researches have been performed in tracking a maneuvering target. The conventional Interacting Multiple Model (IMM) filter is well known as a suboptimal hybrid filter that has been shown to be one of the most cost-effective hybrid state estimation scheme. The subfilters of IMM can be considered as fusing its initial value with new measurements. This approach is also shown in this paper. Perception net based error monitoring and recovery technique, which is a kind of geometric data fusion, makes it possible to monitor errors and to calibrate possible biases involved in sensed data and extracted features. Both detecting a maneuvering target and compensating the estimated state can be achieved by employing the properly implemented error monitoring and recovery technique. The IMM filter which employing the error monitoring and recovery technique shows good tracking performance for a highly maneuvering target as well as it reduces maximum values of estimation errors when maneuvering starts and finishes. The effectiveness of the pro-posed method is validated through simulation by comparing it with the conventional IMM algorithm.

  • PDF

합성 이진 옵셋 반송파 신호 추적을 위한 새로운 비모호 상관함수 (A Novel Unambiguous Correlation Function for Composite Binary Offset Carrier Signal Tracking)

  • 이영석;윤석호
    • 한국통신학회논문지
    • /
    • 제38A권6호
    • /
    • pp.512-519
    • /
    • 2013
  • 본 논문에서는 합성 이진 옵셋 반송파를 (composite binary offset carrier: CBOC) 위한 새로운 비모호 상관함수를 제안한다. 먼저, CBOC 신호의 부반송파를 네 개의 부분 부반송파의 합으로 해석하고, 각 부분 부반송파들과 수신 신호의 부분 상관들을 생성한다. 이후 생성된 부분 상관을 재조합하여 날카로운 주 첨두를 갖는 새로운 비모호 상관함수를 생성한다. 모의실험의 결과로부터 신호 추적에 제안한 상관함수를 이용한 경우 기존 상관함수들을 이용한 경우보다 더욱 향상된 추적 오류 표준편차와 다중 경로 오류 포락선을 가짐을 확인한다.

모델참조 적응 퍼지제어기를 이용한 휠베이스 이동 로봇의 궤적 추적 제어 (A Trajectory Tracking Control of Wheeled Mobile Robot Using a Model Reference Adaptive Fuzzy Controller)

  • 김승우;서기성;조영완
    • 제어로봇시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.711-719
    • /
    • 2009
  • This paper presents a design scheme of torque control for wheeled mobile robot(WMR) to asymptotically track the target reference trajectory. By considering the kinematic model of WMR, trajectory tracking control generates the desired tracking trajectory, which is transformed into the command velocity vector for the real WMR to track the target reference trajectory. The dynamic equation of the state error between the target reference trajectory and the desired tracking trajectory is represented by Takagi-Sugeno fuzzy model, and this model is used as the reference model for the real mobile robot error dynamics to follow. The control parameters are updated by adaptive laws that are designed for the error states of the real WMR to asymptotically follow the states of reference error model for the desired tracking trajectory. The proposed control is applied to a typical wheeled mobile robot and simulation studies are carried out to verify the validity and effectiveness of the control scheme.