• Title/Summary/Keyword: tracking antenna

Search Result 237, Processing Time 0.024 seconds

The Design of Beam Forming Module for Active Phased Array Antenna System (능동위상배열안테나용 수신 빔 성형모듈 설계)

  • 정영배;엄순영;전순익;채종석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • This paper is concerned with the design of the beam forming module that is a key unit of the active phased array antenna(APAA) system for mobile satellite communications. This module includes two blocks for main signal and tracking signal. Main signal block has the role of transmitting input signal from phased array antenna to tracking signal block. And, tracking signal block executes main roles, beam forming of tracking signal and electronic beam control. The several electrical performances of this module, phase characteristics and linear gain, etc., agreed with specifications needed fur APAA, and for more clear verification of the performances, the satellite communication test of the APAA including the modules was accomplished in the outdoors.

Test of UAV Tracking Antenna System Using Kalman Filter Based on GPS Velocity and Acceleration (GPS 속도와 가속도 기반의 칼만 필터를 이용한 무인항공기 추적 안테나 시스템의 시험)

  • Seo, Young-Jun;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.883-888
    • /
    • 2011
  • The UAV tracking antenna system based on GPS has a characteristic of update of position information which can occurs a position error. To reduce the position error, UAV tracking antenna system separates period of GPS update-rate and predicts the position of UAV using divided time points. These process improves the tracking performance of UAV. To predict the position of UAV by divided time points, we used a linear kalman filter based on the velocity and acceleration. Using this system, we measured velocity and acceleration according to the change of position. Finally, we can predict the change of position on divided time points.

Proof of SATCOM Antenna Heading Angle's Analytical Model (위성통신 안테나의 위성 지향각도 해석적 모델의 실증)

  • Cho, Gyuhan
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.75-82
    • /
    • 2019
  • A Satellite Communication (SATCOM), which is applied to various systems to communicate with other systems at the limited wired communication situation, is required to head at a stable point of the space, because this system uses a geostationary satellite. It is important to know satellite tracking heading angles such as elevation angle and azimuth angle for the immovable antenna's latitude, longitude, and altitude. Moreover, calculation of heading angle is critical for SATCOM antenna on a moving platform. In this study, a antenna heading angle calculation method is applied to compute elevation and azimuth angle for a SATCOM antenna and the heading angle simulation is executed for the Korea peninsula and surrounding areas. To verify this simulation, satellite tracking test is conducted using a SATCOM antenna which uses monopulse signal tracking method. The simulation is confirmed by comparing this test result with the simulation. And we make a suggestion for calculation of polarization angle of this antenna.

A Study On the Design of a Servo Controller for a Tracking Antenna System between Moving Vehicles by the Fuzzy-PID Controller (Fuzzy-PID 제어기를 이용한 이동체간 추적 안테나 시스템의 서보제어기 설계에 관한 연구)

  • Kim, Jong-Kwon;Cho, Kyeum-Rae;Lee, Dae-Woo;Jang, Chul-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • For continuous communication between moving vehicles such as satellites and unmanned aerial vehicles, an antenna system having at least more than 2-axes is needed. When the antenna is mounted on a moving vehicle such as ground vehicle, ship and so on, a stabilization and tracking system must be equipped to compensate the roll, pitch and yaw motion of the vehicle. The performance of stabilization and tracking system mainly depends on the servo control system that driving the antenna pedestal. Therefore, in this paper, a Fuzzy-PID controller for a stabilization and tracking system of a 2-axes antenna was designed and the performance was verified. To verify the verification of designed servo control system, the performance of the conventional PID controller and that of the Fuzzy-PID controller, designed by the same PID control gains, was compared.

  • PDF

The Receiving System Design and Fabrication of Mobile Antenna for Satellite Internet Service (위성을 이용한 인터넷 통신용 이동 안테나의 수신시스템 설계 및 제작)

  • Park Ung Hee;Son Seong Ho;Noh Haeng Sook;Lee Kyoung Hee;Jeon Soon Ik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.85-91
    • /
    • 2004
  • The land mobile antenna for two-way communication using geostationary satellite consists of a transmitting and receiving systems. The transmitting system plays the role of sending the signal to the satellite while the receiving system does the role of receiving signal from the satellite and tacking the target satellite. Especially, the land mobile antenna for satellite communication must be met with the international regulation such as antenna pattern, transmitting power and tracking error to protect the damage of the neighbor satellites. On the other hand, this paper thoroughly examined a receiving system to satisfy a stable satellite tracking performance and antenna pattern specified by the international regulation for Ku-band geostationary satellite.

Design of Multi-mode Tracking Algorithm for DBS Receiving Antenna on Shipboard

  • Choi, Choel;Kim, Young-Ho;Lee, Sung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.121.3-121
    • /
    • 2001
  • The movement of a ship is important for DBS(Direct Broadcasting Satellite) Receiving Antenna control algorithm design on shipboard. Especially, turning of ship is essential factor to affect the angle change of azimuth and elevation. Therefore, to track the satellite stably, we need the tracking method considering turning rate of ship. In this paper, we propose an effective satellite tracking algorithm for DBS receiving antenna on shipboard. In the proposed method, when a ship is turned, it selects one of the Multi tracking modes - Normal mode, Low speed mode, Middle speed mode and High speed mode - according as turning rate to be calculated by using Gyro sensor.

  • PDF

The Design of Beam Forming Module for Active Phased Array Antenna System (능동위상배열안테나용 수신 빔 성형모듈 설계)

  • 정영배;엄순영;전순익;채종석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.118-122
    • /
    • 2002
  • This paper is concerned with the design of the beam forming module that is a key unit of the active phased array antenna(APAA) system for mobile satellite communications. This module includes two blocks for main signal and tracking signal. Main signal block has the role of transmitting input signal from phased away antenna to tracking signal block. And, tracking signal block executes main roles, beam forming of tracking signal and electronic beam control. The several electrical performances of this module, phase characteristics and linear gain, etc., agreed with specifications needed for APAA, and for more clear verification of the performances, the satellite communication test of the APAA including the modules was accomplished in the outdoors.

  • PDF

Design of an adaptive tracking algorithm for a phased array radar (위상배열 레이다를 위한 적응 추적 알고리즘의 설계)

  • Son, Keon;Hong, Sun-Mog
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.541-547
    • /
    • 1992
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three-dimensional adaptive tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track update illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver detector. A detailed simulation is conducted to test the validity of our tracking algorithm for encounter geometries under various conditions of maneuver.

  • PDF

The antenna azimuth correction method for a special purpose mobile video terminal tracking antenna system implementation (특수목적을 위한 이동형 영상 터미널 장비의 추적안테나 시스템에 적용하기 위한 방위각보정 알고리즘 구현)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2541-2546
    • /
    • 2013
  • In this paper, we proposed on the azimuth correction method for a line-of-sight data-link tracking antenna system. Tracking antenna system is essential to maintain line-of-sight between moving object and data-link equipment. In order to calculate the azimuth and elevation between the moving object and antenna system, we used GPS data. also to match the each coordinate systems, we used geomagnetic sensor or beacon. However, the geomagnetic disturbance-prone terrain in places difficult to correct calibration. The first step, finds the location of the strongest RF signal, we should remember the difference between the reference point and the detected position of the antenna. The second step, we could communicate each other. And the azimuth angle is calculated by GPS values. Despite the geomagnetic interference, we can correct the azimuth angle quickly and easily.

A study on the impact of the distance on the Antenna measurement (안테나 특성 측정에 있어서 거리의 영향 연구)

  • Oh Chang-yul;Lee Hyo-keun;Oh Seung-hyeub
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.209-212
    • /
    • 2004
  • This paper has been studied the impact of the distance between the signal source and the antenna under test on the antenna measurements such as gain and pattern (Phase). The concept and principles of the far-field in the antenna measurement are reviewed at first. The analysis on the impact has been focused on the 11 m parabola antenna system which will be used in the ground telemetry station for tracking and receiving the S-band ($2200\~2400MHz$) signal of KSLV-I. Also, the impact of the distance on the tracking performance of the antenna system has been analyzed.

  • PDF