• Title/Summary/Keyword: track pin

Search Result 26, Processing Time 0.021 seconds

Design of Composite Track Pin for High Mobility Tracked Vehicles (고기동성 궤도차량용 복합재료 궤도 핀의 설계)

  • Lee, Dae-Gil;Park, Dong-Chang;Lee, Seung-Min;Kim, Hak-Sung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.163-166
    • /
    • 2003
  • Since the track pin is subjected to large transverse track tension from the track link, conventional track pins for high mobility vehicles are usually made of high strength steel, which increases the weight of tracked vehicles due to the high density of steel. In this paper, several composite materials were employed for track pin design to reduce weight of track pin as well as to enhance the fatigue life of rubber bushings. Especially the effects of shear stiffness of the composites on the life of rubber bushing were investigated.

  • PDF

A study of Heat Analysis on Track Rubber Parts (궤도고무부품의 열해석에 관한 연구)

  • Kim, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.117-122
    • /
    • 1999
  • Track rubber parts has heat built-up as long as dynamic loading is applied from running tracked vehicles. Durability is required for rubber part to sustain the heat accumulation and heat exchange between rubber-metal assembly and environmental air and ground. For this research, the track assembly was divided into four parts i.e., bottom track shoe, upper track pad, pin busing and metal structure. Three rubber parts and metal structure were modelled and analyzed with MARC package program to obtain time-temperature data which was induced form mechanical work of tracked vehicles. heat accumulation data was obtained from special experiments under the room temperature of 25$^{\circ}C\;and\;35^{\circ}C$ to simulate the actual environmental conditions. From this research, it is cleared that the environmental temperature does not affect to the heat accumulation speed in rubber parts. Also, the heat built-up mechanism was clarified from the thermo-mechanical work based on numerical analysis and experiments.

  • PDF

A Numerical Method for Dynamic Analysis of Tracked Vehicles of High Mobility

  • Lee, Ki-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1028-1040
    • /
    • 2000
  • A numerical method is presented for the dynamic analysis of military tracked vehicles of high mobility. To compute the impulsive dynamic contact forces which occur when a vehicle passes on a ground obstacle, the track is modeled as the combination of elastic links interconected by pin joints. The mass of each track link, the elastic elongation of a track link between pin joints by the track tension, and the elastic spring effects on the upper and lower surfaces of each track link have been considered in the equations of motion. And the chassis, torsion bar arms, and road wheels of the vehicle are modeled as the rigid multi bodies connected with kinematic constraints. The contact positions and the contact forces between the road wheels and track, and the ground and the the track are simultaneously computed with the solution of the equations of motions of the vehicle consisting of the multibodies. The iterative scheme for the solution of the multi body dynamics of the tracked vehicle is presented and the numerical simulations are conducted.

  • PDF

Separation Mode Analysis of Track Assembly of Main Battle Tank (궤도형 전투차량의 궤도박리 발생 및 성장모드 예측에 관한 연구)

  • Lee, Kyoung-Ho;Park, Byoung-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • In this paper, we have proposed a simple finite element model for separation mode analysis on the roadwheel and track assembly of main battle tank and established a contact stress-based mechanism which could explain the initiation and growth of separation defect occurred during the test of padreplacable track. It was proved that the longitudinal contact shear stress component on the pin hole region of the track shoe body which is parallel to the driving direction is consistent with the crack initiation at the bonding surface between track shoe and wheel-side rubber. The longitudinal shear stress increased locally near the separated region after the separation initiated. So we could assume that the local stress concentration accelerates the separation growth according to the shear mode.

A new routhing architecture for symmetrical FPGA and its routing algorithm (대칭형 FPGA의 새로운 배선구조와 배선 알고리즘)

  • 엄낙웅;조한진;박인학;경종민
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.4
    • /
    • pp.142-151
    • /
    • 1996
  • This paper presents a new symmetrical routing architecture for FPGA and an efficient routing algorithm for the architecture. The routing architecture adopts the segmented wires and the improved switch modules. Segmetned wires construct routing channels which pass through the chip in vertical and horizontal directions. To maximize the utility of a track, a track in each switch module can be separated in two part using a programmable switch to route two different net. The proposed routing algorithm finds all assignable tracks for a given net and selects the best track from assignable tracks to minimize the number of programmable switches and the unused portion of the wire segments. In order to stabilize the perfomrance of the algorithm, the routing order is defined by weighted sum of the number of wire segment, the length of wire segmetn, and the number of pin. Experimental results show that routability is improved dramatically and the number of crossing switches are reduced about 40% compared with the previous works.

  • PDF

Effect of Pro-eutectoid Ferrite and Cementite-spheroidization on the Sliding Wear Resistance of Carbon Steels (탄소강의 초석페라이트와 시멘타이트 구상화가 미끄럼마멸 거동에 미치는 영향 분석)

  • Hur, H.L.;Gwon, H.;Kim, M.G.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.345-350
    • /
    • 2014
  • The current study elucidates the effects of cementite spheroidization and pro-eutectoid ferrite on the sliding wear resistance in medium carbon (0.45wt%C) and high carbon (1wt%C) steels. Both steels were initially heat treated to obtain a fully pearlite or ferrite + pearlite microstructure. Spheroidizing heat treatments were performed on both steels to spheroidize the pearlitic cementite. Sliding wear tests were conducted using a pin-on-disk wear tester with the steel specimens as the disk and an alumina ($Al_2O_3$) ball as the pin. The sliding wear tests were carried out at room temperature in air with humidity of $40{\pm}2%$. Adapted sliding distance and applied load was 300m and 100N, respectively. Sliding speed was 0.1m/s and the wear-track radius was 9 mm. Worn surfaces and cross-sections of the wear track were examined using an SEM. Micro Vickers hardness of the wear-track subsurface was measured as a function of depth from the worn surface. Hardness and sliding-wear resistance of both steel decreased with increased spheroidization of the cementite. The decrease was more significant in the fully pearlitic steel (1wt%C steel). The steel with the pro-eutectoid ferrite showed relatively higher wear resistance compared to the spheroidized pearlitic steel.

Wear of UHMWPE Pins Against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions (두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸)

  • 이권용;김석영;김신윤
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.167-172
    • /
    • 2002
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, fur the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steef discs.

Wear of UHMWPE Pins against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions (두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸)

  • 이권용;김석영;김신윤
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.67-71
    • /
    • 2000
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, for the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steel disks.

  • PDF

Evaluation of Wear in Inconel 600 Tools in Superplastic Forming of Ti6Al4V Sheet (Ti6Al4V 판재의 초소성 성형공정에서 Inconel 600 금형 마모 평가)

  • J. Bang;J. Song;M. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.112-117
    • /
    • 2024
  • In this study, the friction and wear characteristics of Inconel 600 in the superplastic forming process of Ti6Al4V were evaluated through pin-on-disc tests. To achieve an efficient and systematic experimental design, the Taguchi method was employed. The wear track of the Inconel 600 pin showed scratches in the sliding contact direction, confirming that the wear mechanism is abrasive wear. Through sensitivity analysis such as ANOVA and Main effects, it was confirmed that both normal force and sliding distance have a significant impact on the wear. Changes in sliding velocity and distance did not affect the friction coefficient, which remained relatively constant at approximately 0.380. The wear prediction model for Inconel 600 in the superplastic forming of Ti6Al4V was constructed, which can be utilized as a guideline for the prediction and management of tool wear.

Effect of Stress History on Friction and Wear of Metals in Dry and Boundary Lubricated Conditions (건조 및 경계윤활 조건에서 응력이력에 따른 금속재료의 마찰 마멸 특성)

  • 황동환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04a
    • /
    • pp.93-98
    • /
    • 1996
  • Friction and wear characteristics of metals in dry and boundary lubricated sliding conditions are observed experimentally using pin-on-disk and pin-on-plate type tribotesters. The motivation of this research is to investigate the effect of sliding history on the tribological behavior of metals. Cu and SM45C steel materials were used for the experiment. The results show that in dry condition the fictional behavior as well as wear of the specimens differed between uni-directional and bi-directional sliding conditions. The friction coefficient values, wear profile and optical micrograph of the wear track are presented.

  • PDF