• Title/Summary/Keyword: track geometry

Search Result 120, Processing Time 0.037 seconds

The Allowable Displacement Limit on the Approach Slab for a Railway Bridge with Ballastless Track (콘크리트궤도부설 교량의 접속슬래브 허용변위한도에 관한 연구)

  • Choi, Jin-Yu;Yang, Shin-Chu;Yoo, Jin-Young;Cho, Hyun-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1149-1155
    • /
    • 2007
  • The transition area between a bridge and an earthwork is one of the weakest area of track because of the track geometry deterioration caused unequal settlement of backfill of abutment. In case of a ballastless track, the approach slab is installed to prevent the phenomenon. But, if there is occurred the inclined displacement on the approach slab by a settlement of the foundation or formation, the track is also under the inclined displacement. And this defect causes reducing the running stability of a vehicle, the riding comfort of passengers, and the deteriorations of track by excessive impact subjected to the track. In this study, parametric studies were performed to know what is the allowable displacement limit on the approach slab to avoid such a bad effect. The length and amount of unequal settlement of the approach slab was adopted as parameter for numerical analysis. And car body accelerations, variations of wheel force and rail stress and uplift force induced on a fastener clip are investigated. From the result, resonable settlement limits of an approach slab according to slab length was suggested.

  • PDF

Ground Track Prediction Model of the KITSAT-1

  • Yi, Hyun-Joo;Park, Kyu-Hong-
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.04a
    • /
    • pp.20-20
    • /
    • 1993
  • An accurate prediction of the satellite ground track is essential to optimise the maneuver design. It requres a prediction model that considers all perturflations that cause significant variations in the satellite ground track. We developed a prediction model that includes the effects of the fifth-order zonal harmonics, atmospheric drag, and luni-solar gravitational perturbations. Luni-solar gravity perturbations have been obtained in an ether way which is different from the method we used in previous paper(Yi and Choi, 1992). In this case, we consrtuct our own disturbing fuction including inclination term by the Algebraic Manipulation. Luni-solar perturbations reduce the maneuver magnitude required to offset eastward ground track drift due to drag, the amount dependent on current luni-solar phasing geometry.

  • PDF

Buckling Probability Evaluation Framework of CWR Tracks (장대레일 궤도의 좌굴확률평가 시스템)

  • Bae, Hyun-Ung;Han, Seung-Ryong;Choi, Jin-Yu;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.305-309
    • /
    • 2010
  • The buckling behavior of CWR tracks is affected by the various parameters such as stiffness and geometry of track panel, ballast resistance, rail temperature, initial imperfection, and wheel load. Until now, CWR tracks were managed by the dichotomous logic (deterministic approach) despite these influence factors are having the nature of random variables. So, the design method and existing management process to prevent the track buckling can be very non-economic since the value of these influence factors to calculate the track buckling strength are selected by considering the worst track condition. In this study, buckling probability evaluation process is proposed which is based on the reliability index, AFOSM method, and limit state equation.

  • PDF

Measurement of Track geometry with HSR350X (한국형고속열차를 이용한 궤도 틀림 측정결과 비교분석)

  • Im, Yong-Chan;Kim, Sang-Soo;Park, Choon-Soo;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.278-282
    • /
    • 2007
  • The riding comfort and the durability of train are effected by the rail irregularities such as track gauge, superelevation, alignment, longitudinal level, twist, cant and cross level. Inspection and estimation of irregularities are very important to maintain the rail condition. Generally, the EM120 has been utilized to measure the rail irregularities once a month in Korea. However, the EM120 can be operated at night time only, because the inspection speed of EM120 is much slower than the speed of high-speed trains. Also, the EM120 is too slow to inspect effectively for the whole commercial line. Therefore, we have mounted the track inspection system on the High-Speed Rolling Stock 350 eXperimental (HSR350X) and measured the rail irregularities to confirm the condition of a rail while running 300km/h. In this paper, the track inspection system mounted on HSR350X is mainly considered, and the measured results through test run are introduced.

  • PDF

A time domain analysis of train induced vibrations

  • Romero, A.;Galvin, P.;Dominguez, J.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.297-313
    • /
    • 2012
  • This paper is intended to show the robustness and capabilities of a coupled boundary element-finite element technique for the analysis of vibrations generated by high-speed trains under different geometrical, mechanical and operation conditions. The approach has been developed by the authors and some results have already been presented. Nevertheless, a more comprehensive study is presented in this paper to show the relevance and robustness of the method which is able to predict vibrations due to train passage at the vehicle, the track, the free-field and any structure close to the track. Local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line can be represented by the model. Non-linear behaviour of the structures can be also considered. Results concerning the excitation mechanisms, track behaviour and sub-Rayleigh and super-Rayleigh train speed are summarized in this work.

The Displacement Limit at the End of an Approach Slab for a Railway Bridge with Ballastless Track (콘크리트궤도 부설 교량의 접속슬래브 단부 처짐한도에 관한 연구)

  • Choi, Jin-Yu;Yang, Shin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.195-202
    • /
    • 2008
  • The transition area between a bridge and an earthwork is one of the weakest area of track because of the track geometry deterioration caused unequal settlement of backfill of abutment. In case of a ballastless track, the approach slab could be installed to prevent such a phenomenon. But, if there is occurred the inclined displacement on the approach slab by a settlement of the foundation or formation, the track is also under the inclined displacement. And this defect causes reducing the running stability of a vehicle, the riding comfort of passengers, and increasing the track deteriorations by excessive impact force acting on the track. In this study, parametric studies were performed to investigate the displacement limit on the approach slab to avoid such problems. The length and the amount of unequal settlement of approach slab were adopted as parameter for numerical analysis considering vehicle-track interaction. Car body accelerations, variations of wheel force, stresses in rail, and uplift forces induced on fastener clip were investigated. From the result, resonable settlement limit on the end of an approach slab according to slab length was suggested.

A study on torque measuring technique for track drive unit of earthmoving equipment with very large capacity (대형 건설장비용 주행유닛의 토크 측정기술에 관한 연구)

  • Lee, Yong-Bum;Han, Seung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.97-103
    • /
    • 2009
  • Since a demand for an extensive range of earthmoving equipment like a hydraulic excavator with a capacity of 85tons has been asked in construction fields, a performance of its track drive unit has to be verified experimentally. Among the verification of the performances, a torque measurement is at issue, in which a torque meter is utilized widely. However, the very large scaled torque meter is necessary when a discharged torque from the track drive unit is increased significantly. In addition, the price for experimental set-up of a torque meter is too high due to its limitation of the geometry such as long length, and a break down in operation occurs frequently. In this study, to measure a high torque up to 200,000Nm, a new technique was proposed as an alternative of conventional measurement by using a torque meter. The new technique enables to measure the high torque stably in a compact space via a torque arm and two load cells. The experimental results showed a propriety of the proposed torque measuring technique for a track drive unit with very large capacity.

  • PDF

A Parametric Study on the Serviceability of Concrete Slab Track on Railway Bridges (철도교 콘크리트 슬래브궤도의 사용성에 관한 매개변수 영향 연구)

  • Park, Hong-Kee;Jang, Seung-Yup;Yang, Sin-Chu;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.95-103
    • /
    • 2009
  • Deformations of bridge deck ends on abutments and piers bring about severe problems in track geometry and require maintenance work. In case of concrete slab track, more severe deformation and additional forces on rail and rail supports can be induced by bridge deck deformation, which affect the serviceability of track structure since concrete slab track is much stiffer than ballasted track and the behavior of track structure is integrated with that of bridge deck. In this study, the design variables affecting the serviceability of track structure are selected and the influence level is estimated by a parametric study. As a result, it is found that continuous span is advantageous than simply supported span and the stiffness of bridge bearing and rail fastener as well as the distance between last rail support and bridge bearing are most important parameters.

Development of Movable nose crossing turnout on concrete track using Fast Clip (Fast clip을 적용한 콘크리트궤도용 노스가동 분기기 개발)

  • Hwang, Kwang-Ha;Ryou, Ki-Tae;Park, Chun-Bok;Park, Kwang-Ryoun;Yun, Byung-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.287-296
    • /
    • 2011
  • Turnout is a mechanical installation enabling railway trains to be guided from one track to another at a railway junction. A movable nose crossing frog is a device used at a railway turnout to eliminate the gap at the common crossing (High manganese, block, assembly crossing)which can cause impact damage, noise and vibration. Our government has a plan speed up of conventional line to 250km/h semi-high speed. We had already developed flexible turnout with fixed crossing(High manganese) and SFC fastening system can cover in the semi-high speed line In this study is about development of the movable nose crossing turnout available Semi-high speed line on concrete track. This paper describes about geometry, attack angle, bending stress at the nose, switching force, safety of continuous welded long rails. This movable nose crossing turnout is expected greatly increases passing speed of turnout in national railway.

  • PDF

A Study on the Linear Modeling of Wheel/Rail Interaction for the Train Dynamics (철도차량 동특성 해석을 위한 휠/레일 상호작용의 선형모델링 연구)

  • 박찬경;박기준;박준서;배대성
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.517-524
    • /
    • 1998
  • A liner numerical model of the wheel-rail interation and the track geometry is developed for multi-body dynamics program. The simulation results are very simulation to these of VAMPIRE simulation. This program can be used for the analysis of train dynamic performance.

  • PDF