• Title/Summary/Keyword: track dynamic irregularity

Search Result 59, Processing Time 0.025 seconds

The Effect of the ZLR and Tied Sleeper to Reduce the Track Irregularity in the Bridge Expansion Joint Zone (교량신축부에서의 궤도틀림 저감을 위한 활동체결구 및 침목결속 효과)

  • Kang, Tae-Ku;Min, Kyung-Ju;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2405-2408
    • /
    • 2011
  • In recent time, the cause analysis and the reduction of the track irregularity have become the most important issue in the ballasted track on the high-speed railway bridge. This is because that the frequency of the maintenance work at the bridge expansion joint zone is on the rise. The track irregularity on the railway bridge starts at the end of the bridge-deck and spreads along the bridge. Due to the dynamic vibration and the thermal expansion of the bridge, the compaction of the ballast gravel on the bridge expansion joint zone become loose and then the progress of the track irregularity result from the train-induced dynamic impact is accelerating further. Among the several options for reducing the track irregularity on the bridge expansion joint zone, the application and efficiency of the zero longitudinal restraint(ZLR) and tied sleeper are investigated in this paper. Field test construction has been conducted, then the progress of the track irregularity and the frequency of the maintenance work are analyzed before and after the filed test construction. Of the two methods, it is shown that the installation of the ZLR seems to be better than the tied sleeper.

  • PDF

Real-time prediction of dynamic irregularity and acceleration of HSR bridges using modified LSGAN and in-service train

  • Huile Li;Tianyu Wang;Huan Yan
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.501-516
    • /
    • 2023
  • Dynamic irregularity and acceleration of bridges subjected to high-speed trains provide crucial information for comprehensive evaluation of the health state of under-track structures. This paper proposes a novel approach for real-time estimation of vertical track dynamic irregularity and bridge acceleration using deep generative adversarial network (GAN) and vibration data from in-service train. The vehicle-body and bogie acceleration responses are correlated with the two target variables by modeling train-bridge interaction (TBI) through least squares generative adversarial network (LSGAN). To realize supervised learning required in the present task, the conventional LSGAN is modified by implementing new loss function and linear activation function. The proposed approach can offer pointwise and accurate estimates of track dynamic irregularity and bridge acceleration, allowing frequent inspection of high-speed railway (HSR) bridges in an economical way. Thanks to its applicability in scenarios of high noise level and critical resonance condition, the proposed approach has a promising prospect in engineering applications.

Track Irregularity Inspection Method for Commercial Vehicle (영업차량에서의 궤도비틀림 검측 방안 연구)

  • Lee Chan-Woo;Choi Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.768-773
    • /
    • 2003
  • The inspection of track irregularity, which is the most important index for the evaluation of the dynamic safety of the rolling stock, is performed by setting up the testing train set. The self-diagnosis for the various rolling stocks and railways can be obtained if it is possible to take the simultaneous inspection of track irregularity for the commercial vehicle while it is running and to build up a dynamic safety evaluation system. It is expected to have some good effects, such as preventing accident with the low dynamic safety, cutting cost for the testing train set and evaluating the exact influence on the rolling stock and railway. In this study, innertial measuring method, which allows us to directly measure the track irregularity from the commercial vehicle, will be considered and some overseas cases will be explored as well.

  • PDF

Dynamic Analysis of Structure's Approaches through Field Tests in the Conventional Railway (현장계측을 통한 기존선 철도 구조물 접속부의 거동분석)

  • Park, Joon-Oh;Lee, Sang-Bae;Hong, Won-Pyo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1864-1874
    • /
    • 2007
  • Korean trains pass many mountain areas, so the volume of structures like bridge and tunnel has large part of railway lines. Train speed-up naturally needs a straight line in railway, then structures are increasing, and the length of structure has more than 70% in Kyongbu high-speed railway. The stiffness of bridge and tunnel is higher than the soil in the roadbed in spite of dynamic difference in vibration and displacement. Differences in stiffness have more dynamic effects and increase the deformation and destruction in the track and roadbed. This influences passenger's comfort and the safety of operation, and it needs more track maintenance. This study selected tunnel with ballast track, tunnel with concrete track, and structure's approaches with short maintenance cycle in the roadbed and had track acceleration tests and track liner inspections using track master in the field. This study will measure periodically to structure's approaches which have very fast track irregularity and analyze dynamic differences and track irregularity near structure's approaches, so realize the cause of track irregularity of structure's approaches and use basic data for reasonably strengthening method of structure's approaches.

  • PDF

A Study of Reinforcement of Railway Structure Approaches in Conventional line (기존선 철도구조물 접속부의 보강에 대한 고찰)

  • Park, Joon-Oh;Lee, Sang-Bae;Kim, Kwan-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.442-452
    • /
    • 2007
  • Korean trains pass many mountain areas, so the volume of structures like bridge and tunnel has large part of railway lines. Train speed-up naturally needs a straight line in railway, then structures are increasing, and this influences passenger's comfort and the safety of operation, and it needs more track maintenance. The stiffness of bridge and tunnel is higher than the soil in the roadbed in spite of dynamic difference in vibration and displacement. Differences in stiffness have more dynamic effects and increase the deformation and destruction in the track and roadbed. This study will measure periodically to structure's approaches which have very fast track irregularity and analyze dynamic differences and track irregularity near structure's approaches, so realize the cause of track irregularity of structure's approaches and use basic data for reasonably strengthening method of structure's approaches.

  • PDF

Influence of track irregularity on train and track behaviours on high speed rail (차량고속주행시 차량 및 궤도거동에 미치는 궤도틀림의 영향)

  • 이진욱;양신추;홍진완
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.307-314
    • /
    • 1998
  • In this paper, a numerical method for analyzing the interactions between train and track is presented. The effect of track irregularity on high speed running trains and track is examined by parametric studies. Two types of vertical track irregularity are considered. The first one is ideally assumed to a sine wave to investigate train and track behaviors with the change of its shape feasibly, The second one is artificially generated from PSD of track irregularity which was established from the measured data on real railways. In the track dynamic model, rail is considered to have a distributed mass and to be supported discretely at sleepers above ballast divided into three layers. Then, the contact between wheel and rail is modeled by a nonlinear Hertzian spring.

  • PDF

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;T. Benker
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.318.1-318
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body fur the carbody was implemented in the Multi-Body-Simulation Program Simpack. (omitted)

  • PDF

Influences of guideway geometry parameters and track irregularity on dynamic performances of suspended monorail vehicle-guideway system

  • He, Qinglie;Yang, Yun;Cai, Chengbiao;Zhu, Shengyang
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • This work elaborately investigates the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the suspended monorail vehicle-guideway system (SMVGS). Firstly, a spatial dynamic analysis model of the SMVGS is established by adopting ANSYS parameter design language. Then, the dynamic interaction between a vehicle with maximum design load and guideway is investigated by numerical simulation and field tests, revealing the vehicle-guideway dynamic features. Subsequently, the influences of the guideway geometry parameters and track irregularity on the dynamic performances of the SMVGS are analyzed and discussed in detail, and the reasonable ranges of several key geometry parameters of the guideway are also obtained. Results show that the vehicle-guideway dynamic responses change nonlinearly with an increase of the guideway span, and especially the guideway dynamic performances can be effectively improved by reducing the guideway span; based on a comprehensive consideration of all performance indices of the SMVGS, the deflection-span ratio of the suspended monorail guideway is finally recommended to be 1/1054~1/868. The train load could cause a large bending deformation of the pier, which would intensify the car-body lateral displacement and decrease the vehicle riding comfort; to well limit the bending deformation of the pier, its cross-section dimension is suggested to be more than 0.8 m×0.8 m. The addition of the track irregularity amplitude has small influences on the displacements and stress of the guideway; however, it would significantly increase the vehicle-guideway vibrations and rate of load reduction of the driving tyre.

Characteristics of Track and Train Behaviors on High-Speed Railway Bridge/Earthwork Transiton Zone (고속철도 교량/토공 접속부에서의 궤도 및 차량 거동 특성)

  • Lee, Il-Wha;Kang, Yun-Suk;Kim, Eun;Son, Ki-Jun;Park, Chan-Kyoung
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.129-134
    • /
    • 2003
  • It is very important to pay careful attention to construction of bridge/earthwork transition zone for high-speed railway. The transition zone of the railway is the section which roadbed stiffness is suddenly varied. Differences in stiffness have dynamic effects and these increase the forces in the track and the extent of deformation. An abrupt change of stiffness across two adjacent track portions cause irregular settlement of roadbed, track irregularity, lack of girder bending moment and reduction of lateral resistance. Especially on high-speed railway, track irregularity of transition zone cause sincere effect to track stability and train safety. And so continuous maintenance is needed. To verify this effect and to improve transiton zone capacity, In situ test, track irregularity and train acceleration test were performed on high-speed railway bridge/earthwork Transiton Zone.

  • PDF

Dynamic Response Characteristics for Two-layered Trackbed Structure by Train Load (열차하중에 의한 이층노반구조의 동적 응답특성)

  • Lee, Il-Wha
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • It is difficult to clarify the dynamic response characteristics of trackbed because of various environmental conditions. However, track irregularity be affected by ununiformed bearing capacity and its dynamic response, study for dynamic response characteristics is required to investigate the cause of track irregularity and countermeasure. In this paper, the response variation for dominant frequency and vibration energy by trackbed structure and material stiffness are investigated. The analysis section is two layered ground structure that is comprised of trackbed and soft rock. This structure amplifies the energy of dominant range easily. It is evaluated to affect track irregularity on comparing by theoritical, analytical and empirical method for dynamic response of the trackbed.