• Title/Summary/Keyword: tracheid

Search Result 81, Processing Time 0.021 seconds

Effect of Hydroxypropyl Cellulose Treatment for Surface Stabilization of Waterlogged Wood of Wan-do Shipwreck Impregnated with Polyethylene Glycol (폴리에틸렌글리콜(PEG) 함침처리한 완도선 목재의 표면 안정화를 위한 하이드록시프로필 셀룰로오스(HPC) 처리효과)

  • Kim, Eung Ho;Han, Gyu Seong
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.155-165
    • /
    • 2016
  • This study aimed at verifying the effect of hydroxypropyl cellulose(HPC) treatment on polyethylene glycol(PEG)-treated waterlogged wood for surface stabilizing. This research investigated macroscopic and microscopic appearance, color change, weight change, and dimensional change. And effect of HPC was verified through variance analysis (ANOVA) and least significant difference test(LSD). HPC formed thin layer on the surface of wood specimen, and blocked the pore of tracheid and the gap between the crack. Specimens without deterioration showed no invisible change except HPC 1,000,000 treatment group. Whitening was appeared at the sound surface of HPC 1,000,000 treated wood. Specimens with deterioration showed a little color difference change by external moisture adsorption. Thin layer of HPC on the surface of wood specimen was maintained after the deterioration, and this HPC layer significantly suppressed the weight and dimensional change by moisture adsorption.

Species identification and microscopic structure of ancient wood excavated from the remains( II ) -Degradation of ancient woods- (출토고목재의 수종과 조직구조에 관한 연구( II ) -출토고목재의 부후형태-)

  • KANG, A. K.;PARK, S. J.
    • Journal of Conservation Science
    • /
    • v.2 no.2 s.2
    • /
    • pp.15-24
    • /
    • 1993
  • To understand the morphological change of ancient woods, samples classified by cell type, burial environment and species were collected and observed using microscopy. Decay of wood by cell type could classified into two types. First, degraded secondary wall was formed granular residues in $S_2$ layer and was remained $S_3$ layer and compound middle lamella. Second, the cell wall was slightly degraded and cracked in secondary wall. A gradual thinning of cell wall was occured. The compound middle lamella was separated from secondary wall. The resistance of degradation is increased at vessels, parenchyma, and tracheid and wood fiber in the order named. The type of degradation by species could be classified into four types. Overall degradation type; the degradation of cell wall is usually heavy and the extent of degradation Varies by part of the same sample. Partial degradation type ; this type shows severely different decay type by part of the sample. Nondegraded cells were mixed with degraded cells on the same sample. Erose degradation type ; thinning of the cell wall was occoured and the degradation type was different by part. Slight degradation types ; secondary wall was slightly degraded, cracked and separated from compound middle lamella. Considering different type of burial environment, dry wood was similiar to sound wood and slightly decayed. Waterlogged and peat burial wood was heavilydecayed. Between species of under the same environment, decay type and extent were diferentiated from each other.

  • PDF

Study on the Change of Physical and Anatomical Properties in the Pine Wood by Accelerated Weathering Test (촉진열화실험에 의한 소나무의 물성 및 조직 변화에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.3
    • /
    • pp.324-331
    • /
    • 2012
  • The domestic pine was used to investigate the change of specific gravity, moisture contents, color and anatomical structure by accelerated weathering test (AWT). According to visual inspection, a few knot separation and looseness as well as considerable surface discoloration was found out. However, the crack and split of surface texture have been never occurred till the last step of AWT. On the whole, as the time of accelerated weathering test has increased, the specific gravity has decreased. Finally, after the 9th week of AWT, the specific gravity was 0.38 that reached to 82% compared to the control specimen. In case of moisture content (MC), it showed rising trend in its early stages, however, after 3th week of AWT it have displayed steady state. A deterioration of cell-wall components was not remarkably observed by scanning electron microscope (SEM), however the ray fractures of AWT specimen were observed more than those of control specimen. The full fracture of epithelial cell around resin canal was observed by optical microscope. The fracture of ray of 2th cycle AWT specimen was first, followed by 1th week and control group. A distortion of tracheid for early spring wood and fracture of epithelial cell were generally observed by a similar level, regardless of duration time of AWT. Therefore, it is obvious that increasing duration time of AWT does not affect the deterioration of micro-structure for wood members from this study. Although a considerable change of anatomical properties was not found, there is a need of further research to understand how will the changes of specific gravity and MC on the physical properties of wood member.

  • PDF

Physical Properties of Composite Panel Manufactured from Wood Particle and Recycled Polypropylene (목재파티클과 재생폴리프로필렌을 이용한 복합패널 제조 및 물성에 관한 연구)

  • Han, Tae-Hyung;Shin, Rang-Ho;Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.46-54
    • /
    • 2005
  • To make the composite panels of wood particles and recycled plastics, the recycled polypropylene was used. In the composite panels the sizes of wood particles were 1/32", 1/4" and 1/2" mesh, and the composition ratios of the recycled plastics were 10%, 30%, 50% and 70%. The physical and mechanical properties of the composite panels were investigated. As the composition ratio of wood particle increases, the density increases, while it decreases at the same composition ratio because the size of wood particle increases. As the composition ratio of recycled polypropylene increases from 10% to 30%, both thickness swelling and water adsorption significantly decrease. As the composition ratio of recycled polypropylene increases, the modulus of rupture in bending strength increases, but the modulus of elasticity in bending strength decreases. SEM shows that the dissolved recycled polypropylene penetrates into tracheid and pit, and bonds mechanically to other wood particle and matrix to increase the bonding strength and improve the physical and mechanical properties of composite panel.

Anatomical Comparison of Compression, Opposite, and Lateral Woods in New Zealand Rimu (Dacrydium cupressinum Lamb.)

  • Eom, Young-Geun;Butterfield, Brian G.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.1-13
    • /
    • 2001
  • Compression, lateral, and opposite woods in the stem and branch of rimu (Dacrydium cupressinum Lamb.), a softwood species indigenous to New Zealand, were described and compared in the anatomical aspects. Qualitatively, growth rings were wide in the compression wood, intermediate in the lateral wood, and narrow in the opposite wood. Tracheid transition from early wood to late wood was very gradual in the compression wood but was more abrupt in both the lateral and opposite woods. When viewed transversely, compression wood tracheids showed a roundish outline except at the growth ring boundary but lateral and opposite wood tracheids were angular to rectangular in outline. Intercellular spaces were occasionally detected in the compression wood except in the late wood at the growth ring boundary but were absent from both the lateral and opposite woods. Slit-like extensions of the bordered pit openings caused by the location of pit apertures within short and narrow helical grooves were observed in the compression wood tracheids but not in the opposite or lateral wood tracheids. In the compression wood tracheids, fine striations in the form of fine checks or grooves were observed on the lumen surfaces and the innermost $S_3$ layer of secondary wall was absent. In the tracheids of lateral and opposite woods, the $S_3$ layer was sometimes absent but occasionally highly developed. Cross-field pits in the compression wood appeared to be piceoid due to slit-like pit apertures but those in the lateral and opposite wood tracheids showed cupressoid to taxodioid. Quantitatively, compression wood tracheids were somewhat shorter than those of opposite or lateral wood in stem but not different from the opposite or lateral wood tracheids in branch. The walls were thicker in the compression wood than in the lateral or opposite wood. Uniseriate rays in the compression wood were fewer than in the lateral or opposite wood.

  • PDF

Physical and Mechanical Properties of Composite Panel Manufactured from Wood Particle and Recycled Polyethylene (목재 파티클과 재생폴리에틸렌을 이용한 목질복합패널의 물리·기계적 성질)

  • Han, Tae-Hyung;Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.340-348
    • /
    • 2009
  • The recycled polyethylene was used for making wood-plastic composite panels. In this experiment, the sizes of wood particles used were 1/32", 1/4" and 1/2" in mesh number, and the contents of the recycled polyethylene were 10%, 30% and 50%. The physical and mechanical properties of the composite panels were investigated. At a given content of recycled polyethylene, the density of composite panel decreases with the increase of wood particle size. The thickness swelling and water adsorption decrease with the increase of recycled polyethylene, where significantly lower at 10%, compared with at 30%. In the water soaking experiment for 14 days, the dimensional stability of composite panel appeared good in the composite panel with recycled polyethylene content of 30% or higher. As the content of recycled polyethylene increases, the internal bonding strength and the modulus of rupture in bending strength increases. In SEM, the molten recycled polyethylene showed interlocking action through its penetration into tracheid openings including pits as well as binder between wood particles as the matrix material, thus increasing bonding strength and improving the physical and mechanical properties of composite panel.

Mechanical Characteristics of Korean Red Pines according to Provinces (Goseong, Hongcheon and Bonghwa-gun) (한국산 소나무의 지역(고성, 홍천 및 봉화군)에 따른 역학적 특성)

  • Kim, Min-Ji;Kim, Ji-Yeol;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.666-675
    • /
    • 2020
  • This study investigated mechanical characteristics of pine trees in Yeongdong (Goseong-gun), Yeongseo (Hongcheon-gun), and Yeongnam (Bonghwa-gun) to define differences in the material quality among pine trees of the three regions. The compressive strength, hardness and shear strength of pine trees of each region were measured. There were no differences in the compressive strength of the juvenile woods among the regions, while the heartwood and sapwood in Bongwha generally showed the highest compressive strength followed by those in Hongcheon and in Goseong. The hardness of the cross-section of pines in Bonghwa was the highest, and in terms of the hardness of the radial and tangential sections, pines in Goseong topped the list.. There were no difference among heartwoods of each region in terms of the shear strength, but, but sapwood from Bonghwa had higher shear strength than those of the other two regions, which may be attributed to differences in tracheid length and microfibril angle among pines in each region. This study identifies the quality differences among pines of different region, and therefore, is expected to add value by helping choose the domestic pine tree material effectively and selectively, and also select a plus tree.

Evaluation of Adhesive Characteristics of Mixed Cross Laminated Timber (CLT) Using Yellow Popular and Softwood Structural Lumbers

  • Keon-Ho KIM;Hyun-Mi LEE;Min LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.58-69
    • /
    • 2024
  • To evaluate the adhesive characteristics of mixed cross-laminated timber (CLT) using domestic softwoods structural lumber proposed by KS F 3020 and yellow poplar, penetration depth of adhesive and thickness of bonding line were analyzed based on the results of boiling water soaking delamination. 3 Types of adhesives and 2 types of major layer were divided into a 5 ply CLT using yellow popular as minor layer. The bonding performance of the mixed CLT as structural members was evaluated based on the KS F 2081. The thickness of bonding line between layers of the mixed CLT was measured with a scanning electron microscope, and the adhesive penetration depth in the layer members was measured with an optical microscope. As a result of boiling water soaking delamination test of mixed CLT, the CLT specimens using PRF and PUR adhesives met the requirements of KS F 2081. It was verified that the penetration path of the adhesive in the layes was mainly through the tracheid cell in the case of Japanese larch and Korean red pine layers, and through the vessel and radial tissue in yellow popular layers. The penetration depth of the adhesive was the highest for the PRF adhesive under the same pressing time conditions, and the thickness of the bonding line was in inverse proportion to the penetration depth in the case of the PUR adhesive.

Evaluation of the Basic Properties for the Korean Major Domestic Wood Species I. Korean Red Pine (Pinus densiflora) in Pyeongchang-gun, Gangwon-do

  • Yonggun PARK;Chul-ki KIM;Hanseob JEONG;Hyun Mi LEE;Kwang-Mo KIM;In-Hwan LEE;Min-Ji KIM;Gyu Bin KWON;Nayoung YOON;Namhee LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.87-100
    • /
    • 2024
  • Wood has different properties depending on the species or growth area. Therefore, in order to use wood efficiently, it is necessary to have a proper understanding of the characteristics of wood depending on the species and the appropriate use for them. In particular, in order to effectively use more than 1,000 species of woody plants in South Korea as wood, it is necessary to evaluate the characteristics of various Korean domestic woods and make a database of them. In this study, the anatomical properties (length and width of tracheid, cell wall thickness), physical properties (specific gravity and shrinkage), mechanical properties (bending strength, compressive strength, tensile strength, shear strength, hardness), and chemical composition (ash, extract, lignin, total sugar content) of Korean red pine which was grown in Pyeongchang-gun, Gangwon-do, South Korea were evaluated.

The Variation of Natural Population of Pinus densiflora S. et Z. in Korea(II) -Characteristics of Needle and Wood of Myong-Ju, Ul-Jin, and Suweon Populations- (소나무천연집단(天然集團)의 변이(變異)에 관(關)한 연구(硏究)(II) -명주(溟州), 울진(蔚珍), 수원집단(水原集團)의 침엽(針葉) 및 재질형질(材質形質)-)

  • Yim, Kyong Bin;Kwon, Ki Won
    • Journal of Korean Society of Forest Science
    • /
    • v.31 no.1
    • /
    • pp.8-20
    • /
    • 1976
  • For study on the variation of natural stand, three populations of Pinus densiflora S. et Z. were selected at samsanri Yongogmyun Myongjugun Kangwondo (4), Hawonri seomyun Uljingun Kyongbuk (5), and Emogdong Suweon Kyongkido (6) successibely after the selection of three population in 1974. Twenty individual trees were chosen from each population and the morphological characteristics of trees, needle and wood properties were investigated on the trees. The results are summerized as follows; 1. Serration density, resin canal number in needle did not show significant differences, however stomata row number in the both sides of needle showed highly significant differences among 3 populations. But significant differences were calculated among individual trees in a population regarding any character of needles. 2. Ail population had high correlation on the stomata row between abaxial and adaxial side of needle. 3. The Myongjungun population showed the highest value of resin duct index, which means the population had the highest degree of hybrid character. 4. The ring segment width and summerwood percentage in the wood properties had significant differences, and yet specific gravity and tracheid length had not significant differences statistically among 3 populations. But all the values were significant statistically among the ring segments within population. 5. The ring segment width decreased rapidly with increasing tree age but summerwood percentage, specific gravity, tracheid length increased slowly to the middle age of tree and then decreased slowly after the age. But the patterns of decrease or increase were some different by population. 6. The values of Uljingun population were generally high in the coefficient of variation on all the needle characters. And the values of Suweon population were always the highest and those of Myongjugun population the lowest in the coefficient of variation on all the wood properties.

  • PDF