• Title/Summary/Keyword: tracer gas method

Search Result 67, Processing Time 0.029 seconds

Errors in Estimated Temporal Tracer Trends Due to Changes in the Historical Observation Network: A Case Study of Oxygen Trends in the Southern Ocean

  • Min, Dong-Ha;Keller, Klaus
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.189-195
    • /
    • 2005
  • Several models predict large and potentially abrupt ocean circulation changes due to anthropogenic greenhouse-gas emissions. These circulation changes drive-in the models-considerable oceanic oxygen trend. A sound estimate of the observed oxygen trends can hence be a powerful tool to constrain predictions of future changes in oceanic deepwater formation, heat and carbon dioxide uptake. Estimating decadal scale oxygen trends is, however, a nontrivial task and previous studies have come to contradicting conclusions. One key potential problem is that changes in the historical observation network might introduce considerable errors. Here we estimate the likely magnitude of these errors for a subset of the available observations in the Southern Ocean. We test three common data analysis methods south of Australia and focus on the decadal-scale trends between the 1970's and the 1990's. Specifically, we estimate errors due to sparsely sampled observations using a known signal (the time invariant, temporally averaged, World Ocean Atlas 2001) as a negative control. The crossover analysis and the objective analysis methods are for less prone to spatial sampling location biases than the area averaging method. Subject to numerous caveats, we find that errors due to sparse sampling for the area averaging method are on the order of several micro-moles $kg^{-1}$. for the crossover and the objective analysis method, these errors are much smaller. For the analyzed example, the biases due to changes in the spatial design of the historical observation network are relatively small compared to the tends predicted by many model simulations. This raises the possibility to use historic oxygen trends to constrain model simulations, even in sparsely sampled ocean basins.

Experimental Evaluation of an Analytical Method for Chlorofluorocarbons (CFSs) in Air and Water Using Gas Chromatography (가스 크로마토그래피를 이용한 대기와 물시료의 CFCs(chlorofluorocarbons) 분석법의 실험적 평가)

  • Koh, Dong-Chan;Choi, Beom-Kyu;Kim, Yong-Je
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.129-140
    • /
    • 2007
  • CFC(CFC-12, CFC-11 and CFC-113) analytical system for air and water was constructed using a customized purge and trap extraction device and a gas chromatograph with an electron capture detector. Sampling methods of air and water for CFCs were also established. The analytical system was experimentally optimized to result in reproducibilities of triplicates less than 2% for current air samples and less than 5% for groundwater samples with CFC-12 concentration of 160 to 180 pg/kg, and verified with respect to the CFC system in USGS, which showed analytical results were in agreement within 10%. CFCs in air were monitored at three sites over 19-month period in the central part of South Korea, and the result indicates no significant local sources of CFCs in those areas. For groundwater in Jeju Island, CFCs were measured over a year with a two-month interval. The time-series data showed seasonal fluctuations which could be interpreted by the effect of recharge pulse derived from large amount of rainfall during monsoon period with a few month delay, which indicates high permeability of basaltic rocks in Jeju Island.

Experimental and CFD Study on the Exhaust Efficiency of a Smoke Control Fan in Blind Entry Development Sites (맹갱도 굴진 작업공간내 방재팬의 화재연 배기효율에 관한 현장실험 및 CFD 연구)

  • Nguyen, Vanduc;Kim, Dooyoung;Hur, Wonho;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.38-58
    • /
    • 2018
  • The ventilation system plays a crucial role in underground mine safety. The main objective of the ventilation system is to supply sufficient air to dilute the contaminated air at working places and consequently provide tenable environment during the normal operation, while it also should be capable of controlling the fire propagation and facilitate rescue conditions in case of fire in mines. In this study, a smoke control fan was developed for the auxiliary ventilation as well as the fire smoke exhaust. It works as a free-standing auxiliary fan without tubing to dilute or exhaust the contaminated air from the working places. At the same time, it can be employed to extract the fire smoke. This paper aims to examine the smoke control efficiency of the fan when combined with the current ventilation system in mines. A series of the site experiments and numerical simulations were made to evaluate the fan performance in blind entry development sites. The tracer gas method with SF6 was applied to investigate the contaminant behavior at the study sites. The results of the site study at a large-opening limestone mine were compared with the CFD analysis results with respect to the airflow pattern and the gas concentration. This study shows that in blind development entry, the most polluted and risky place, the smoke fan can exhaust toxic gases or fire smoke effectively if it is properly combined with an additional common auxiliary fan. The venturi effect for smoke exhaust from the blind entry was also observed by the numerical analysis. The overall smoke control efficiency was found to be dependent on the fan location and operating method.

A study on Behavior of Turbulent Transient Jets with Butane and Propane (Butane 및 propane의 비정상 난류 제트 특성에 관한 연구)

  • Lee, Beom-Ho;Song, Hak-Hyun;Cho, Seung-Hwan;Hong, Sung-Tae;Lee, Dae-Yup;Lee, Tae-Woo
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.74-82
    • /
    • 2010
  • In order to understand the behavior of transient gaseous injection used in an LPG (Liquefied Petroleum Gas) engine, turbulent incompressible transient jets with butane and propane were measured and analyzed at pressures of 1.5 bar and 2.0 bar with injector diameters of 3 mm and 5 mm. Mie-scattering method with a tracer was used, and images were processed to investigate the behavior of butane and propane jets. Distances from the nozzle to transition region were measured as $L_e/d_{inj}$=4.35~19.4, where $L_e$ and $d_{inj}$ indicate respectively a distance from nozzle to transition point and nozzle diameter. Slits and tubes around jet at near-field were introduced to measure the effect of entrainment and the diameter of jet, which revealed that the entrainment of surrounding air is significant for developing jet diameter. When the entrainment is restricted, the behavior of jet became deviating from the baseline. It was found that the virtual origin located outside of a nozzle towards jet tip within the conditions of this work, and its location was estimated as $x_o/d_{inj}$=0.56~7.25, where $x_o$ is a distance from nozzle to virtual origin.

Evaluation of Ventilation Performance of a Residential Unit for Different Sampling Points through Actual Field Tests (실증실험을 통한 측정 위치에 따른 주거공간 환기성능 평가)

  • Kwag, Byung Chang;Lee, Soo Man;Kim, Gil Tae;Kim, Jong Yeob
    • Land and Housing Review
    • /
    • v.13 no.3
    • /
    • pp.93-106
    • /
    • 2022
  • Ventilation plays an important role in controlling indoor air quality. Due to the recent spread of infectious diseases such as COVID-19 and with people spending more time indoors, there's been increased attention on the importance of ventilation performance. In many countries, ventilation is regulated by airflow rates and the number of air changes per hour (ACH). However, airflow rates and ACH alone do not provide an accurate account of actual indoor pollutant removal and ventilation uniformity in a space. This study looked into the ventilation performance of an actual residential unit using several sampling points instead of basing it off of airflow and air change rates. Literature review was used to derive relevant influencing factors and the tracer gas dilution method was used for the field test. The study measured air velocity, age of air, and ventilation efficiency at several locations and compared them to the average value at the center of the test space to determine the differences in ventilation performance at the selected measurement points. The study showed that different sampling locations resulted in different ventilation values. Findings of this study will be used to develop an experimental procedure for evaluating indoor ventilation performance of actual residential spaces.

Improvement of Oxygen Isotope Analysis in Seawater samples with Stable Isotope Mass Spectrometer (질량분석기를 이용한 해수 중 산소안정동위원소 분석법의 개선)

  • Park, Mi-Kyung;Kang, Dong-Jin;Kim, Kyung-Ryul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.348-353
    • /
    • 2008
  • Oxygen isotope has not been used actively in water mass studies because of difficulties on the analysis though it has advantages as a water mass tracer. The most popular method to analysis the oxygen isotope ratio in water samples is equilibration method: isotopic equilibrium of water with $CO_2$ at constant temperature. The precision of oxygen isotope analysis using commercial automatic $H_2O/CO_2$ equilibrator is ${\pm}0.1%o$. This value is not sufficient for studies in open ocean. The object of this study is to improve the analytical precision enough to apply open ocean studies by modification of the instrument. When sample gas is transferred by the pressure difference, the fractionation which is preferential transportation of light isotope can be occurred since the long transportation path between the equilibrator and mass spectrometer. And the The biggest source of error during the analysis is long distance and large volume of the pathway of sample gas between. Therefore, liquid nitrogen trap and high vacuum system are introduced to the system. The precisions of 14 time analysis of same seawater sample are ${\pm}0.081%o$ and ${\pm}0.021%o$ by built-in system and by modified system in this study, respectively.

Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange (온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.647-657
    • /
    • 2015
  • To investigate a method for calculation of the heating load for environmental designs of horticultural facilities, measurements of total heating load, infiltration rate, and floor heat flux in a large-scale plastic greenhouse were analyzed comparatively with the calculation results. Effects of ground heat exchange and infiltration loss on the greenhouse heating load were examined. The ranges of the indoor and outdoor temperatures were $13.3{\pm}1.2^{\circ}C$ and $-9.4{\sim}+7.2^{\circ}C$ respectively during the experimental period. It was confirmed that the outdoor temperatures were valid in the range of the design temperatures for the greenhouse heating design in Korea. Average infiltration rate of the experimental greenhouse measured by a gas tracer method was $0.245h^{-1}$. Applying a constant ventilation heat transfer coefficient to the covering area of the greenhouse was found to have a methodological problem in the case of various sizes of greenhouses. Thus, it was considered that the method of using the volume and the infiltration rate of greenhouses was reasonable for the infiltration loss. Floor heat flux measured in the center of the greenhouse tended to increase toward negative slightly according to the differences between indoor and outdoor temperature. By contrast, floor heat flux measured at the side of the greenhouse tended to increase greatly into plus according to the temperature differences. Based on the measured results, a new calculation method for ground heat exchange was developed by adopting the concept of heat loss through the perimeter of greenhouses. The developed method coincided closely with the experimental result. Average transmission heat loss was shown to be directly proportional to the differences between indoor and outdoor temperature, but the average overall heat transfer coefficient tended to decrease. Thus, in calculating the transmission heat loss, the overall heat transfer coefficient must be selected based on design conditions. The overall heat transfer coefficient of the experimental greenhouse averaged $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$, which represents a 60% heat savings rate compared with plastic greenhouses with a single covering. The total heating load included, transmission heat loss of 84.7~95.4%, infiltration loss of 4.4~9.5%, and ground heat exchange of -0.2~+6.3%. The transmission heat loss accounted for larger proportions in groups with low differences between indoor and outdoor temperature, whereas infiltration heat loss played the larger role in groups with high temperature differences. Ground heat exchange could either heighten or lessen the heating load, depending on the difference between indoor and outdoor temperature. Therefore, the selection of a reference temperature difference is important. Since infiltration loss takes on greater importance than ground heat exchange, measures for lessening the infiltration loss are required to conserve energy.