• Title/Summary/Keyword: trace organics

Search Result 8, Processing Time 0.017 seconds

Influence of feed water chemistry on the removal of ionisable and neutral trace organics by a loose nanofiltration membrane

  • Nghiem, Long D.
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.93-101
    • /
    • 2010
  • This study examined the effects of feed water chemistry and membrane fouling on the rejection of trace organics by a loose nanofiltration membrane. One ionisable and one non-ionisable trace organics were selected for investigation. Results reported here indicate that the solution pH and ionic strength can markedly influence the removal of the ionisable trace organic compound sulfamethoxazole. These observations were explained by electrostatic interactions between the solutes and the membrane surface and by the speciation of the ionisable compound. On the other hand, no appreciable effects of solution pH and ionic strength on the rejection of the neutral compound carbamazepine were observed in this study. In addition, membrane fouling has also been shown to exert some considerable impact on the rejection of trace organics. However, the underlying mechanisms remain somewhat unclear and are subject to on-going investigation.

Micellar Enhanced Ultrafiltration Using PEO-PPO-PEO Block Copolymer (PEO-PPO-PEO 블록공중합체를 사용한 마이셀 증진 한외여과법 (유해유기물의 가용화 및 분리특성))

  • 최영국;이동진;김정훈;김동권;이수복
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.83-86
    • /
    • 1998
  • 1. Introduction : Low molecular harmful organics such as 1-naphthol and phenol are widely used in industries, and pose serious environmental problems. Wastewater containing low molecular harmful organics may be ejected from various sources including metal-plating industries, circuit-board manufacturing process, photographic and photo-processing industries, refineries and metal-tailing leachate. The pollution of nation harbors, waterways and ground water resources with these organics has reached critical portions, and might also give hazardous influence on human health. Micellar enhanced ultrafiltration(MEUF) is a recently developed process to remove dissolved organics and/or heavy metals present in small or trace quantities from aqueous solution. In this system, the fatal defect is leakage of surfactants especially at low concentration below CMC(critical micelle concentration), which becomes a secondary pollution. Our group proposed to use biosurfactant and polymeric micelle to solve problems mentioned above. In this study we investigated a modified MEUF using PEO-PPO-PEO (polyethyleneoxide-polypropyleneoxide-polyethyleneoxide) block copolymers for the removal of organic solutes such as 1-naphthol and phenol from aqueous wastewater. We proposed PEO-PPO-PEO block copolymers as new surfactants for forming micelles in MEUF, and investigated the solubilization characteristics and efficiency for the removal of 1-naphthol and phenol. PEO-PPO-PEO block copolymers are, environmentally mild and safe as biosurfactants.

  • PDF

Analysis and Characteristics of Heavy Metals in Mines Waste Water (광산폐수 속의 중금속의 분석과 특성)

  • Lee, Kyung-Ho
    • Journal of the Speleological Society of Korea
    • /
    • no.92
    • /
    • pp.9-18
    • /
    • 2009
  • A number of closed metal mines act as point sources of contamination on nearby streams, soils and plants in our country. The contamination of twelve decomposed samples had earned from nine closed metal mines had been evaluated by TEA-3000. The contents of heavy metal with ion fraction exchange and carbonate fraction forms had been showed that the speciation of heavy metals represented with easy solubility, mobility and bioavailable of plants, and in case of sulfide compounds and organic residuals forms are related with the speciation of metals which may be stable forms because of strong bindable capacity. Also heavy metals elements in mosts of mines got with relative stable within crystal lattice, but results of trace element analyser showed that, in the most of tailings from mine areas, large portions of concentration of heavy metals were explained as stable from, sulfides/ organics and residual. In tailing from Imchun mines, the concentrations extracted by water were relatively high as compared with other mine areas whose total concentrations were very high because of large quantities of exchangeable ions and carbonates and low soil pH. Danger Index (D.I.) suggested in this study was based on the cumulative concentrations of step 1 and 2 from the result of trace element analyser. When the soil pH was considered, this index became better indicator to determine the priority for the remediation of mine area.

The Effects of Environmental Conditions on the Reduction Rate of TNT by $Fe^0$ (환경요인이 $Fe^0$ 에 의한 TNT의 환원 반응속도에 미치는 영향)

  • 배범한
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.52-55
    • /
    • 2000
  • The effects of environmental conditions, initial dissolved oxygen concentrations, pH, and the presence of electron carrier vitamin B$_{12}$ , on the reduction rate of TNT by Fe$^{0}$ was Quantitatively analyzed using a batch reactor. In all experiments, TNT reduction was best described with a first order reaction and the reduction rate decreased with the increase in the initial DO concentration. However, the specific reaction rate did not decrease linearly with the increase in the initial DO concentration. In the presence of HEPES buffer 0.2 and 2.0 mM(pH 5.7$\pm$0.2), the specific reaction rate increased more than 5.8 times, which showed reduction rate is rather significantly influenced by the pH of the solution. To test the possibility of reaction rate enhancement, well-known electron carrier(or mediator), vitamin B$_{12}$ has augmented besides Fe$^{0}$ . In the presence of 8.0 $\mu\textrm{g}$/L of vitamin B$_{12}$ , the specific reaction rate increased as much as 14.6 times. The results indicate that the addition of trace amount of vitamin B$_{12}$ can be a promising rate controlling option for the removal of organics using a Fe$^{0}$ filled permeable reactive barrier.

  • PDF

The Study on the Recovery of Volatile Organic Components by Pervaporation (Pervaporation을 이용한 휘발성 유기성분 회수에 관한 연구)

  • 김희진;송영석;민병렬
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.51-62
    • /
    • 1999
  • The recovery of trace volatile organic components from water by pervaporation was investigated. Permeation experiments through homogeneous polydimethylsiloxane(PDMS) membrane was carried out and the effect of feed concentrations and membrane thicknesses on the permeation characteristics were investigated. A solution-diffusion model is used to describe the pervaporation transport mechanism. In homogeneous PDMS membrane it appeared that the selectivities of MEK and toluene are constant, and that organic flux has a linear relationship with feed concentration. These results indicate that the coupling effects between organics were negligible. The selectivity of PDMS membranes is invariant with respect to the membrane thickness. The intrinsic membrane permeability of organic components determined by using a solution-diffusion model. Comparing with various composite type membrane, the membrane using PEG treated nonwoven fabric as sublayer showed the best performance in VOC recovery by pervaporation.

  • PDF

Removal of Trihalomethane Using Activated Carbon (활성탄(活性炭)을 이용(利用)한 Trihalomethane의 제거(除去)에 관한 연구(研究))

  • Chung, Tai Hak;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.73-79
    • /
    • 1983
  • Activated carbon has been widely used in water and wastewater treatment for removal of trace organics. The objective of this study was to define adsorption characteristics of trihalomethane(THM) on granular activated carbon(GAC) surfaces by laboratory experiments. Synthetic samples were prepared by adding chloroform into distilled and deionized water. The experiments conducted were a batch run and isotherm studies with five different temperature-pH levels. Adsorption of THM on GAC at an equilibrium condition was well described by the Freundlich isotherm equation. Lower temperature favored the adsorption, but the effect of pH was negligible. Utilizing the results of a batch run and the isotherm results, three parameters, mass transfer coefficient, pore diffusion coefficient, and surface diffusion coefficient, were evaluated by comparing with simulation results of an adsorption model. The results also showed that the pore diffusion was much greater than the surface diffusion.

  • PDF

The Effects of Environmental Conditions on the Reduction Rate of TNT by $Fe^0$ (환경요인이 $Fe^0$에 의한 TNT의 환원 반응속도에 미치는 영향)

  • 배범한
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2000
  • The effects of environmental conditions, initial dissolved oxygen concentrations, pH, and the presence of electron carrier vitamin $B_{12}$, on the reduction rate of Tn by $Fe^0$ was quantitatively analyzed using a batch reactor In all experiments, TNT reduction was best described with a first order reaction and the reduction rate decreased with the increase in the initial DO concentration. However, the specific reaction rate did not decrease linearly with the increase in the initial DO concentration. In the presence of HEPES buffer 0.2 and 2.0 mM(pH 5.7$\pm$0.2), the specific reaction rate increased more than 5.8 times, which showed reduction rate is rather significantly influenced by the pH of the solution. To test the possibility of reaction rate enhancement, well-known electron carrier(or mediator) , vitamin $B_{12}$, has augmented besides $Fe^0$. In the presence of 8.0 $mu\textrm{g}$/L of vitamin $B_{12}$, the specific reaction rate increased as much as 14.6 times. The results indicate that the addition of trace amount of vitamin $B_{12}$ can be a promising rate controlling option for the removal of organics using a $Fe^0$ filled permeable reactive barrier.

  • PDF

Trichloroethylene (TCE) Removal Capacity of Synthesized Calcium Sulfoaluminate Minerals in Hydrated Cement-based Materials (합성 Calcium Sulfoaluminate계 시멘트 수화물의 Trichloroethylene (TCE) 제거능)

  • Ha, Min-Gyu;Ghorpade, Praveen A.;Kim, Jeong-Joo;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1463-1469
    • /
    • 2013
  • Portland cement used as binding material in combination of ferrous iron for reductive dechlorination of chlorinated organics is already widely studied topic by several researchers. However there is no clear evidence about the component solely responsible in cement for trichloroethylene (TCE) dechlorination. Many researchers suspect that the ettringite, monosulfate phases associated with hydration of cement are responsible active agents for TCE dechlorination. This study deals with synthesizing different pure crystalline minerals like ettringite and monosulfate phases of cement hydration and check individual phase's TCE dechlorinating capacity in combination with ferrous iron. The results indicated that the synthesized minerals showed no reduction capacity for TCE. The findings in the present study is significant as it shows that ettringite and monosulfate phases which were suspected minerals by previous researchers for TCE dechlorination are not reactive. Hence it is suspected that some other mineral or mineral form in cement phase could be responsible for TCE degradation.