• Title/Summary/Keyword: trace minerals (Mu, Zn, Cu and Fe)

Search Result 9, Processing Time 0.023 seconds

Potential Antioxidant Trace Mineral (Zn, Mn, Cu and Fe) Concentrations Measured by Biochemical Indices in South Koreans

  • Cho, Young-Eun;Byun, Young-Mee;Kwak, Eun-Hee;Yoon, Jin-Sook;Oh, Hyun-Mee;Kim, Jae-Wang;Shin, Hyun-Soo;Kwon, Chong-Suk;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.374-382
    • /
    • 2004
  • The concern of the antioxidant micronutrient status in normal healthy people, including antioxidant trace minerals such as Cu, Zn, Mn, Fe and Se is focused since systemic oxidation is involved in various chronic diseases. In the present study, we evaluated the concentration of trace minerals (Cu, Zn, Mn, and Fe) which are considered as potential antioxidant minerals in plasma, red blood cells (RBCs) and urine in normal healthy Korean subjects. The 760 subjects (male 341, female 419; mean age 54.2 $\pm$ 18.9) were recruited from the rural, urban and metropolitan city in South Korea. Dietary intake was evaluated using 24-hours recall for general major nutrient intake assessment. The trace elements (Cu, Zn, Mn, and Fe) concentrations in plasma, RBCs, and urine were measured by inductively coupled plasma spectrophotometer (ICP) and atomic absorption spectrophotometer (AAS). Cu and Zn levels in plasma, RBCs and urine in normal healthy South Koreans were within the normal range of those mineral levels, but Mn and Fe levels were higher compared to the normal range of those mineral levels. None of the selected trace mineral levels in plasma and RBC's was lower than the normal range value. The results showed that Zn and Cu levels in plasma and RBC's in Korean were within the normal range, and plasma and urinary Mn and Fe levels were higher than the normal reference values. Potential antioxidant trace mineral (Cu, Mn, Zn and Fe) levels in Koreans are within or a bit higher than the normal range.

A STUDY ON NUTRITIONAL STATUS OF TRACE MINERALS OF CATTLE IN JAVA IN INDONESIA

  • Kumagai, H.;Ishida, N.;Katsumata, M.;Yano, H.;Kawashima, R.;Jachja, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.1
    • /
    • pp.15-20
    • /
    • 1990
  • The nutritional status of trace minerals in cattle of Java in Indonesia was investigated by evaluating Cu, Fe, Mo, Zn and Mn concentrations in diets and livers, and Cu and Zn concentrations in blood plasma. Investigations were conducted on Jonggol (West Java), Malang (East Java) and Mojokerto (East Java) in both the rainy and the dry seasons in 1988. In Jonggol, low Cu concentrations in diets showing 7.1 mg/kg in the rainy season and 10.9 mg/kg in the dry season were observed and all plasma samples showed Cu concentrations below the critical level ($0.65{\mu}g/ml$). Thirty percent of the liver samples in Malang and 54% of those in Mojokerto showed lower Cu concentrations than the critical level (75 mg/kg on a dry matter basis). Fe concentrations in diets from the three regions showed a wide variation of values ranging from 249 to 30,000 mg/kg. A large amount of Fe was accumulated in livers from Malang and Mojokerto, giving average concentrations of 498 mg/kg. Zn concentration in diet and plasma samples were close to the borderline and some Zn concentration in these samples showed deficient levels. Mo and Mn concentrations in diets and livers showed normal levels.

Cellular Zn depletion by metal ion chelators (TPEN, DTPA and chelex resin) and its application to osteoblastic MC3T3-E1 cells

  • Cho, Young-Eun;Lomeda, Ria-Ann R.;Ryu, Sang-Hoon;Lee, Jong-Hwa;Beattie, John H.;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 2007
  • Trace mineral studies involving metal ion chelators have been conducted in investigating the response of gene and protein expressions of certain cell lines but a few had really focused on how these metal ion chelators could affect the availability of important trace minerals such as Zn, Mn, Fe and Cu. The aim of the present study was to investigate the availability of Zn for the treatment of MC3T3-E1 osteoblast-like cells and the availability of some trace minerals in the cell culture media components after using chelexing resin in the FBS and the addition of N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN, membrane-permeable chelator) and diethylenetriaminepentaacetic acid (DTPA, membrane-impermeable chelator) in the treatment medium. Components for the preparation of cell culture medium and Zn-treated medium have been tested for Zn, Mn, Fe and Cu contents by atomic absorption spectrophotometer or inductively coupled plasma spectrophotometer. Also, the expression of bone-related genes (ALP, Runx2, PTH-R, ProCOL I, OPN and OC) was measured on the cellular Zn depletion such as chelexing or TPEN treatment. Results have shown that using the chelexing resin in FBS would significantly decrease the available Zn (p<0.05) $(39.4{\pm}1.5{\mu}M\;vs\;0.61{\pm}10.15{\mu}M)$ and Mn (p<0.05) $(0.74{\pm}0.01{\mu}M\;vs\;0.12{\pm}0.04{\mu}M)$. However, levels of Fe and Cu in FBS were not changed by chelexing FBS. The use of TPEN and DTPA as Zn-chelators did not show significant difference on the final concentration of Zn in the treatment medium (0, 3, 6, 9, $12{\mu}M$) except for in the addition of higher $15{\mu}M\;ZnCl_2$ which showed a significant increase of Zn level in DTPA-chelated treatment medium. Results have shown that both chelators gave the same pattern for the expression of the five bone-related genes between Zn and Zn+, and TPEN-treated experiments, compared to chelex-treated experiment, showed lower bone-related gene expression, which may imply that TPEN would be a stronger chelator than chelex resin. This study showed that TPEN would be a stronger chelator compared to DTPA or chelex resin and TPEN and chelex resin exerted cellular zinc depletion to be enough for cell study for Zn depletion.

The Supplementation of Yam Powder Products Can Give the Nutritional Benefits of the Antioxidant Mineral (Cu, Zn, Mn, Fe and Se) Intakes

  • Shin, Mee-Young;Cho, Young-Eun;Park, Chana;Sohn, Ho-Yong;Lim, Jae-Hwan;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.4
    • /
    • pp.299-305
    • /
    • 2012
  • Yam has been recognized having the beneficial effects for the prevention of various diseases, such as cancer, immunity, infection and obesity etc. There is increasing consideration to supplement the antioxidant nutrients to make up the lack of the antioxidant nutrient intakes. No study has been reported for the analysis of antioxidant mineral contents and comparison to dietary recommended intake for the sense of health promotion. In our study, we analyzed the contents of antioxidant trace elements (Zn, Mn, Fe, Cu and Se) and Cr contents in cultivated Korean yam powders for evaluation of nutrient intake aspects. We collected the commercial yam powders from six different cultivated areas in the South Korea and measured antioxidant minerals (Zn, Mn, Fe, Cu and Se) and Cr contents using trace element-free plasma spectrometer (ICP) or atomic absorption spectrometer (AAS) after dry-ashing and then wet-acid digestion. The accuracy of mineral analysis method was confirmed by the mineral analysis of standard reference material. Each analyzed element contents in yam were compared to dietary reference intakes of Koreans (KDRIs). The average levels of trace elements (Zn, Mn, Fe, Cu, Se and Cr) in yam powders were 18.3, 11.9, 36.0, 3.7, 1.9 and 1.27 ${\mu}g/g$ yam powder, respectively. The intakes of Zn, Fe, Cu and Se of which KDRIs is determined, are accounted as being up to 23.8%, 55.6%, 32.5% and 236% recommended intake (RI) of KDRIs, if daily yam supplementation (50 g) of commercial instruction would be considered. The intake of Mn is about 25% adequate intake (AI) of KDRIs with the daily supplementation of yam powder. Most of mineral intakes from daily yam supplementation were with the range of non-detectable to <10% upper limit (UL) level, which is very much safe. The study results show that daily supplementation of Korean yam power is beneficial to provide the supplemental nutrient intake and also is safe, if the suggested dosage would be considered.

Vertical Distribution of Heavy Metal Concentrations in Sediment Cores and Sedimentation Rate Using $^{210}Pb$ Dating Technique in the Juam Reservoir (주암댐 호저 퇴적물에서의 수직적 중금속 분산과 $^{210}Pb$를 이용한 퇴적속도산정)

  • Lee Pyeong-Koo;Youm Seung-Jun;Yeon Gyu Hun;Chi Se-Jung;Kim Ji-Wook;Oh Chang-Whan;Kim Sun-Ok
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.43-57
    • /
    • 2005
  • Twelve bottom sediments and three cores were collected in Juam reservoir for a study on transportation, which was controlled by particle grain size (2mm-200{\mu}m,\;200-100{\mu}m,\;100-50{\mu}m,\;50-20{\mu}m,\;<20{\mu}m), and vertical distribution of heavy metals. Sediment cores were sliced into 2 to 5 cm intervals to measure heavy metal concentrations in interstitial water and sediments with depth. Pb isotopic compositions of core samples were determined to calculate sedimentation rate. Regardless of sampling sites, levels of heavy metals and trace elements in bottom sediments are nearly constant with mean values of $14.9\;{\mu}g/g\;for\;As,\;0.81{\mu}g/g\;for\;Cd,\;30.7{\mu}g/g\;for\;Cu,\;34.7{\mu}g/g\;for\;Ni,\;63.3{\mu}g/g\;for\;Pb\;and\;87.9{\mu}g/g\;for\;Zn$. In general, Cu, Pb, Zn, Wi, and Cr in fraction of $<20{\mu}m$ exhibit the highest concentration, but content of As is the highest in grain size of $2\;mm-200\;{\mu}m$ and $200-100\;{\mu}m$. Fe and Mn occur as the dissolved compositions of the highest concentrations in interstitial waters and increase in their concentrations toward lower part of cores. On the contrary, concentrations of Zn and Cu show the highest value in the uppermost part in cores, suggesting these elements are released from reductive dissolution of hydroxides and oxidation of organic matters under different redox conditions. The highest accumulations of Cu, Ni, Pb, and Zn contents in the sediment cores are observed at 0-4 cm layers, and concentrations of Cu and Pb are especially high, implying these heavy metals are originated from anthropogenic sources. The apparent sedimentation rate estimated using unsupported $^{210}Pb$ is 0.91 cm $year^{-1}$, corresponding about 10 cm sedimentation in total depth since construction of Juam dam. These results will provide available information for management of bottom sediment in Juam reservoir.

Dietary Intakes, Serum Concentrations, and Urinary Excretions of Fe, Zn, Cu, Mn, Se, Mo, and Cr of Korean Young Adult Women (일부 젊은 성인여자의 Fe, Zn, Cu, Mn, Se, Mo 및 Cr의 식사섭취, 혈청농도 및 소변배설)

  • Kim, Kyune-Hee;Lim, Hyeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.39 no.8
    • /
    • pp.762-772
    • /
    • 2006
  • This study was conducted to investigate dietary intakes, serum concentrations, and urinary excretions of iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), selenium (Se), molybdenum (Mo), and chromium (Cr) of Korean young adult women. A total of 19 apparently healthy young adult women aged in their twenties or thirties participated voluntarily. One-tenth of all foods they consumed for 3 consecutive days were collected, all urine excreted for the same 3 days was gathered, and fasting venous blood was withdrawn for the trace mineral analyses. Of the food, blood, and urine samples, the contents of Zn, Cu, Mn, Se, Mo, and Cr were analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) and that of Fe by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) after wet digestion. The intake of Fe, $6.94{\pm}2.18mg$, did not meet the estimated average requirement (EAR) for Korean women aged 20-29 years old. On the contrary, the intakes of Zn ($9.35{\pm}4.95mg$), Cu ($1.18{\pm}0.26mg$), and Mn ($3.69{\pm}0.69mg$) were sufficient for each respective EAR. However, some of the subjects did not take the EAR for Zn. The Se intake, $41.93{\pm}9.28{\mu}g$, however, was almost similar to the EAR for Se. Although there are no references for Mo and Cr, the intakes of these minerals ($134.0{\pm}49.1\;and\;136.5{\pm}147.9{\mu}g$, respectively) seemed to be excessively sufficient. Serum Fe concentration, $88.7{\pm}36.8{\mu}g/dL$, seemed to be a little bit lower than its reference median but within its normal range. Approximately one-fourth of the subjects were in anemic determined by Hb and Hct and below the deficiency serum level of Fe, $60{\mu}g/dL$. In addition, serum Se concentration, $3.73{\pm}0.60{\mu}g/dL$, was also below its reference median and normal range. However, serum concentrations of Zn ($99.6{\pm}30.6{\mu}g/dL$) and Mo ($0.25{\pm}0.10{\mu}g/dL$) were fairly good compared to each reference median. The status of Cu could be determined as good although its serum concentration ($91.6{\pm}14.6{\mu}g/dL$) was slightly below its reference median. Since there are no decisive reference values, it was not easy to evaluate serum concentrations of Mn ($0.93{\pm}0.85{\mu}g/dL$) and Cr ($8.60{\pm}7.25{\mu}g/dL$). But Mn and Cr status seemed to be adequate. Urinary Fe excretion, $4.48{\pm}1.98{\mu}g/dL$, was pretty much lower than its reference and that of Se, $2.45{\pm}1.17{\mu}g/dL$, was also lower than its average. On the other hand, those of Zn ($42.95{\pm}20.47{\mu}g/dL$) and Cu ($5.68{\pm}1.50{\mu}g/dL$) were flirty good. In case of Mn, urinary excretion, $0.31{\pm}0.09{\mu}g/dL$, was much greater than its reference. Urinary excretions of Mo ($7.48{\pm}2.95{\mu}g/dL$) and Cr ($1.37{\pm}0.41{\mu}g/dL$) were very higher compared to each reference. The results of this study revealed that Korean young adult women were considerably poor in Fe status, a bit inadequate in Se status, partly inadequate in Zn status, and flirty good in Cu, Mn, Mo and Cr status. However, there was a problem of excessive intakes of Mo and Cr. It, therefore, should be concerned to increase the intakes of Fe, Se and Zn but to decrease Mo and Cr consumption for young adult women.

Quantitative Requirements of Copper and Manganese in Formulated Diets and Its Interrelation with Other Minerals in Young Eel (뱀장어용 배합사료의 적정 Cu와 Mn 첨가량에 관한 연구)

  • PARK Chul Won;SHIMIZU Chiaki
    • Journal of Aquaculture
    • /
    • v.1 no.2
    • /
    • pp.109-119
    • /
    • 1988
  • Following the previous study on the nutritional quantity of Al, Fe, and their interrelationships with other trace metals, this study was conducted to determine the effect of supplementation of Cu and Mn to fish meal-diets on the growth of Japanese eel. The feeding experiment to determine Cu requirement was conducted using white fish meal-diets supplemented with 0, 5, 10, or 20 $\mu$g/g cupric sulfate, and that to determine Mn requirement was conducted by suppling the diet with 0, 10, 20, or 40 $\mu$g/g manganese sulfate. The results revealed that the fish on diet annexed with 5 $\mu$g/g of Cu were observed to have the best growth among these groups. In case of Mn, 20 $\mu$g/g of supplementary level promoted growth rate and 40 $\mu$g/g of diet resulted in the highest feed efficiency. On the other hand, the highest level of Cu (20 $\mu$g/g), and Mn (40 $\mu$g/g) supplementary diets did not expressed adverse effect on growth. These results indicated that the suitable Cu and Mn supplementary concentrations are 20 $\mu$g/g and 30 $\mu$g/g of formulated the white fish meal-diet respectively. The white fish meal had 1.6 $\mu$g/g of Cu and 6.1 $\mu$g/g of Mn.

  • PDF

Characteristics of Stream and Soil Contamination from the Tailing Disposal and Waste Rocks at the Abandoned Uljin Mine (울진 폐광산의 매립광미와 폐광석에 의한 주변 토양 및 수계의 오염특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.63-79
    • /
    • 2008
  • Physicochemical characteristics of stream water, leachate, mine water and groundwater were investigated to estimate the influences of the tailing and waste rock from the abandoned Uljin mine area. Total extraction analysis and mineralogical studies were carried out to understand sulfide weathering and to determine the distributions of trace elements in the soil affected by mine waste (tailing, waste rock and leachate). The pH and EC value of the leachate from the tailing disposal ranged 2.9-6.0, $99{\sim}3,990{\mu}S/cm$, respectively, and the concentrations of dissolved major (up to 492 mg/l Ca; 83.8 mg/l Mg; 45.2 mg/l Na; 44.7 mg/l K, 50.8 mg/l Si) and trace elements (up to $826,060{\mu}g/l$ Fe; $131,230{\mu}g/l$ Mn; $333,600{\mu}g/l$ Al; $61,340{\mu}g/l$ Zn; $2,530{\mu}g/l$ Cu; $573{\mu}g/l$ Cd; $476{\mu}g/l$ Pb) were relatively high. The stream water showed the variation of dissolved metal concentrations in seasonally and spatially. The dissolved metal contents of the stream water increased by influx the leachate from the tailing disposal, but these of the down stream have been considerably decreased by mixing of dilute tributaries. The dissolved metal concentrations of the stream water at dry season (as February) were lower than these at rainy season (as May and July). These represent that the amounts of the leachate varied with season. However, stream water could not be effectively diluted by confluence with uncontaminated tributaries, because the flux of tributaries and streams reduced at dry season. Thus attenuations by dilution had been dominantly happened in rainy seasons. The order of accumulations of trace element in soils compared with background values revealed Mn>Fe>Pb>Cu>Zn. Sulfide minerals were mainly pyrrhotite, sphalerite and galena and chalcopyrite. Pyrrhotite was rapidly weathered along the edge and fractures, and results in the formation of Fe-(oxy)hydroxides, which absorbed a little amount of Zn.

Metals in Coastal Sediments Adjacent to the Youngkwang Nuclear Power Plant, West Coast of Korea

  • Cho, Yeong-Gil;Yang, Sung-Ryull;Park, kyung-Yang
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.112-119
    • /
    • 1997
  • Coastal sediments collected near the Youngkwang Nuclear Power Plant were analysed for major(Al$_2$O$^_3$, Fe$^_2$O$^_3$, MgO, CaO, Na$^_2$O, K$^_2$O, TiO$^_2$, MnO), trace (Ba, Sr, V, Co, Cr, Cu, Ni, Zn, Pb) metal, and P$^_2$O$^_5$ contents. The composition of bulk metals from most stations fits within the range as those in the average crustal and sedimentary rocks, suggesting that the anthropogenic perturbation of these components is insignificant. The abundance and distribution of total contents for the majority of metals in the surface sediment could be explained by the grain size and were associated with mud (<63 ${\mu}$m) contents. However, distributions of Ca, K, Sr and Ba did not have any significant association with the sediment grain size. This may be due to the geochemical coherence among these metals in certain minerals abundant in coarse grained fractions. The distribution of Pb appears to be partly affected by the contribution from aerosol fallout. Using the R'-mode factor analysis, we show that the variance of the metal contents could be explained by four factors which account for 93.7% of the total variance. It appears that texturally controlled and/or sorting factors influenced by fine fraction are the most dominant factors which determine the relative abundance and distribution of metals in the study area.

  • PDF