• Title/Summary/Keyword: trace metal

Search Result 410, Processing Time 0.024 seconds

Geochemical Characteristics of Surface Sediments and an Evaluation of Trace Metal Pollution in Gomso Bay, Korea, 2011 (2011년 곰소만 표층퇴적물의 지화학적 특성 및 중금속 오염도 평가)

  • Kim, Chung-sook;Kim, Hyung Chul;Lee, Won Chan;Hong, Sokjin;Hwang, Dong-Woon;Cho, Yoon-Sik;Kim, Jin ho;Kim, Sunyoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.567-575
    • /
    • 2017
  • To understand the geochemical characteristics of Gomso Bay, which features extensive Manila clam, we measured various geochemical parameters, organic matter, and trace metals (Cu, Cd, Pb, Zn, Cr, Hg, As and Fe) of intertidal and subtidal surface sediments in 2011. The surface sediments consisted of sedimentary facies including gravel (0.21%), sand (61.1%), silt (32.1%), and clay (6.5%). The chemical oxygen demand (COD) and acid volatile sulfide (AVS) values in most areas were below sediment quality criteria (COD, $20mg/g{\cdot}dry$; AVS, $0.2mg/g{\cdot}dry$). Trace metals in the surface sediments were below pollution thresholds, except for As (morderately polluted). Sediment quality was evaluated using the trace metal pollution load index (PLI) and ecological risk index (ERI), which showed that sediments were generally not polluted and at low risk; however, values along the outer bay were higher. We expect these results will be valuable for sustainable aquaculture prodution and environmental management in Gomso Bay.

Effects of Iron, Chelators and Nitrate Concentration on in vivo Fluorescence and Nitrate Reductase of the Red Tide Organism Amphidinium carterae

  • Yang, Sung-Ryull;Song, Hwan-Seok;Pae, Se-Jin;Huh, Sung-Hoi
    • Journal of the korean society of oceanography
    • /
    • v.34 no.1
    • /
    • pp.49-57
    • /
    • 1999
  • A red tide organism, Amphidinium carterae was incubated under different iron/chelator and nitrate concentrations to investigate the factors controlling the growth. The chelation capacity played a critical role in regulating the nitrate reductase (NR) activity and in vivo fluorescence of this organism. However, there was a significant difference between the NR activity and in vivo fluorescence in response to trace metals and chelator treatments. In vivo fluorescence was the highest in FeEDTA 10 ${\mu}$M treatments and the lowest in DTPA 10 ${\mu}$M treatments. This indicates that the availability of the trace metal is important in regulating the in vivo fluorescence of this photosynthetic microalgae In contrast, NR activity showed the highest values in trace metal enriched treatments, and trace metal + DTPA treatments showed fairly high NR activities. This suggests that DTPA treatment did not hinder the NR activity as much as it did in vivo fluorescence. In vivo fluorescence and NR activity increased with nitrate concentration of up to 50 ${\mu}$M and remained relatively constant or the rate of increase decreased above that concentration, indicating that initial nitrate concentration of higher than a certain level would not accelerate the growth of A. carterae. Further investigation is needed to elucidate the reason for the difference in timing sequence between the NR and in vivo fluorescence in response to different metal treatments and chelation capacity.

  • PDF

Simulating Bioremediation of Uranium-Contaminated Aquifers

  • ;Peter R. Jaffe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.161-166
    • /
    • 2002
  • Bioremediation of trace metals in groundwater may require the manipulation of redox conditions via the injection of a carbon source. To simulate the numerous biogeochemical processes that will occur during the bioremediation of trace-metal-contaminated aquifers, a reactive transport model has been developed. The model consists of a set of coupled mass balance equations, accounting for advection, hydrodynamic dispersion, and a kinetic formulation of the biological or chemical transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and trace metal contaminants of interest, uranium in this study. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species we then used by a modified version of MINTEQA2, which calculates the speciation/sorption and precipitation/dissolution of the species of interest under equilibrium conditions. Kinetics of precipitation/dissolution processes are described as being proportional to the difference between the actual and calculated equilibrium concentration.

  • PDF

Detection of Toxic Heavy Metal, Co(II) Trace via Voltammetry with Semiconductor Microelectrodes

  • Ly, Suw Young;Lee, Chang Hyun;Koo, Jae Mo
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • The cobalt (Co(II)) ion is a main component of alloys and considered to be carcinogenic, especially due to the carcinogenic and toxicological effects in the aquatic environment. The toxic trace of the Co(II) detection was conducted using the infrared photodiode electrode (IPDE) using a working electrode, via the cyclic and square-wave anodic stripping voltammetry. The results indicated a sensitive oxidation peak current of Co(II) on the IPDE. Under the optimal conditions, the common-type glassy carbon, the metal platinum, the carbon paste, and the carbon fiber microelectrode were compared with the IPDE in the electrolyte using the standard Co(II). The IPDE was found to be far superior to the others.

Trace Element in the Indian Ocean: Current Research Trends and Future Needs (인도양에서 미량원소 연구 동향 및 향후 연구 방향)

  • Kim, Intae
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.335-352
    • /
    • 2021
  • Trace elements in the ocean have been known as essential micronutrients for the primary production of phytoplankton and the growth of marine organisms. The GEOTRACES program beginning in the mid-2000 provided a new understanding of the distribution, origin and behavior of trace elements in the ocean, together with the establishment of both clean seawater sampling and trace element analysis techniques. The Indian Ocean, one of the major oceans, is relatively the least explored area, despite playing an important role in global climate variability. Although trace element observations have recently been conducted in the Indian Ocean by Japanese-and Indian scientists, relatively not much study has been done compared to the Atlantic, Pacific and Polar Regions. Recently, together with the launch of R/V Isabu, a 5,000-ton grade large- and comprehensive research vessel, the observations of trace elements has been conducted in the Indian Ocean for the first time in Korea since 2018. In this paper, we introduce the key results of currently conducted GEOTRACES expedition in the Indian Ocean to present future trace element research directions in the Indian Ocean, and also reviewed the preliminary results in the Indian Ocean studies from Korea. In the 2020s, new Indian Ocean GEOTRACES projects are planned around European countries, and it is time for Korea to prepare for the next phase of the trace element study in the Indian Ocean in line with these international trends.

Distributions of Organic Matter and Trace Metals in Intertidal Surface Sediment from the Mokpo-Haenam Coast (목포-해남 연안 조간대 퇴적물중 유기물 및 미량금속 분포 특성)

  • Hwang, Dong-Woon;Kim, Pyoung-Joong;Jung, Rae-Hong;Yoon, Sang-Pil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.454-466
    • /
    • 2013
  • To evaluate the organic matter and trace metal pollution in intertidal sediment of the coastal zone, various geochemical parameters (grain size, ignition loss [IL], chemical oxygen demand [COD], acid volatile sulfide [AVS], and metals [Al, Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As]) were measured for the intertidal surface sediment of the mainland and islands between Mokpo and Haenam in the southwestern coast of Korea. The surface sediments consist mainly of finer sediments, such as mud and silt. The concentrations of IL, COD, and trace metals in intertidal sediment were relatively high in the shoreline of the mainland than in that of islands and those in some stations exceeded the sediment quality guidelines (SQGs). Moreover, the concentrations of IL, COD, and trace metals (except As) in sediment showed relatively good positive correlations with mean grain size, indicating that the concentrations of organic matter and trace metals in intertidal sediment of the study region are dependent on grain size of sediment. Pollution evaluation for trace metals using geochemical assessment techniques, such as enrichment factor, geoaccumulation index, and SQGs, suggested that the intertidal sediments in the study region show light pollution with Cr and moderate pollution with As. More extensive interdisciplinary studies are required to determine the potential causes of As pollution in intertidal sediment.

Chemical Speciation of Trace Metals in Natural Water by Ultrafiltration/Size Exclusion Chromatography/UV Absorption/ICP-MS

  • Haraguchi, Hiroki;Itoh, Akihide;Kimata, Chisen
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.405-410
    • /
    • 1995
  • A study on elemental speciation of trace metals in lake water (Lake Biwa in Japan) has been carried out by a size exclusion chromatography (SEC) / inductively coupled plasma mass spectrometry (ICP-MS) system. Before analysis, the water sample was preconcentrated with a ultrafiltration technique, where the large molecules with molecular weight larger than 10,000 were concentrated. Then the preconcentrated water samples (500-1000 fold) were analyzed by a SEC/ICP-MS system. Most trace metals were found at the UV absorption peaks corresponding to the molecular weights of ca. 300,000 and 10,000-50,000, where trace metals were on-line detected by ICP-MS. The results suggest that many of trace metals exist as the large organic molecules-metal complexes in natural water.

  • PDF

Detection of Trace Copper Metal at Carbon Nanotube Based Electrodes Using Squarewave Anodic Stripping Voltammetry

  • Choi, Changkun;Jeong, Youngsam;Kwon, Yongchai
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.801-809
    • /
    • 2013
  • We investigate sensitivity and limit of detection (LOD) of trace copper (Cu) metal using pristine carbon nanotube (CNT) and acidified CNT (ACNT) electrodes. Squarewave based anodic stripping voltammetry (SWASV) is used to determine the stripped Cu concentration. Prior to performing the SWASV measurements, its optimal conditions are determined and with that, effects of potential scan rate and $Cu^{2+}$ concentration on stripping current are evaluated. The measurements indicate that (1) ACNT electrode shows better results than CNT electrode and (2) stripping is controlled by surface reaction. In the given $Cu^{2+}$ concentration range of 25-150 ppb, peak stripping current has linearity with $Cu^{2+}$ concentration. Quantitatively, sensitivity and LOD of Cu in ACNT electrode are 9.36 ${\mu}A\;{\mu}M^{-1}$ and 3 ppb, while their values are 3.99 ${\mu}A\;{\mu}M^{-1}$ and 3 ppb with CNT electrode. We evaluate the effect of three different water solutions (deionized water, tap water and river water) on stripping current and the confirm types of water don't affect the sensitivity of Cu. It turns out by optical inspection and cyclic voltammetry that superiority of ACNT electrode to CNT electrode is attributed to exfoliation of CNT bundles and improved interfacial adhesion occurring during oxidation of CNTs.

Analysis and Characteristics of Heavy Metals in Mines Waste Water (광산폐수 속의 중금속의 분석과 특성)

  • Lee, Kyung-Ho
    • Journal of the Speleological Society of Korea
    • /
    • no.92
    • /
    • pp.9-18
    • /
    • 2009
  • A number of closed metal mines act as point sources of contamination on nearby streams, soils and plants in our country. The contamination of twelve decomposed samples had earned from nine closed metal mines had been evaluated by TEA-3000. The contents of heavy metal with ion fraction exchange and carbonate fraction forms had been showed that the speciation of heavy metals represented with easy solubility, mobility and bioavailable of plants, and in case of sulfide compounds and organic residuals forms are related with the speciation of metals which may be stable forms because of strong bindable capacity. Also heavy metals elements in mosts of mines got with relative stable within crystal lattice, but results of trace element analyser showed that, in the most of tailings from mine areas, large portions of concentration of heavy metals were explained as stable from, sulfides/ organics and residual. In tailing from Imchun mines, the concentrations extracted by water were relatively high as compared with other mine areas whose total concentrations were very high because of large quantities of exchangeable ions and carbonates and low soil pH. Danger Index (D.I.) suggested in this study was based on the cumulative concentrations of step 1 and 2 from the result of trace element analyser. When the soil pH was considered, this index became better indicator to determine the priority for the remediation of mine area.

Studies on Solvent Extraction and Flotation Technique Using Metal-Dithizone Complexes(II). Determination of Trace Elements in Water Samples by Solvent Sublation

  • 김영상;최윤석;최희선
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1036-1042
    • /
    • 1998
  • The preconcentration and determination of trace elements in water samples were studied by a solvent sublation utilizing dithizonate complexation. After metal dithizonates were formed, trace amounts of cadmium, cobalt, copper and lead were floated and extracted into small volume of a water-immiscible organic solvent on the surface of sample solution and determined in the solvent directly by GF-AAS. Several experimental conditions as formation condition of metal-dithizonate complexes, pH of solution, amount of dithizone, stirring time, the type and amount of surfactants, N2 bubbling rate and so on were optimized for the complete formation and effective flotation of the complexes. And also four kinds of light solvents were compared each other to extract the floated complexes, effectively. After the pH was adjusted to 4.0 with 5 M HNO3, 8.0 mL of 0.05% acetone solution of dithizone was added to 1.00 L water sample. The dithizonate complexes were flotated and extracted into the upper methyl isobutylketone (MIBK) layer by the addition of 2.0 mL 0.2% ethanolic sodium lauryl sulfate solution and with the aid of small nitrogen gas bubbles. And this solvent sublation method was applied to the analysis of real water samples and good results of more than 85% recoveries were obtained in spiked samples.