DOI QR코드

DOI QR Code

Detection of Toxic Heavy Metal, Co(II) Trace via Voltammetry with Semiconductor Microelectrodes

  • Ly, Suw Young (Biosensor Research Institute, Seoul National University of Science and Technology) ;
  • Lee, Chang Hyun (Department of Integrated Environmental Systems, Pyeongtaek University) ;
  • Koo, Jae Mo (Asia Pacific International School)
  • Received : 2016.11.03
  • Accepted : 2017.01.27
  • Published : 2017.04.15

Abstract

The cobalt (Co(II)) ion is a main component of alloys and considered to be carcinogenic, especially due to the carcinogenic and toxicological effects in the aquatic environment. The toxic trace of the Co(II) detection was conducted using the infrared photodiode electrode (IPDE) using a working electrode, via the cyclic and square-wave anodic stripping voltammetry. The results indicated a sensitive oxidation peak current of Co(II) on the IPDE. Under the optimal conditions, the common-type glassy carbon, the metal platinum, the carbon paste, and the carbon fiber microelectrode were compared with the IPDE in the electrolyte using the standard Co(II). The IPDE was found to be far superior to the others.

Keywords

References

  1. Posch, P., Fink, R., Thelakkat, M. and Schmidt, H.W. (1998) A comparison of hole blocking/electron transport polymers in organic LEDs. Acta Polym., 49, 487-494. https://doi.org/10.1002/(SICI)1521-4044(199809)49:9<487::AID-APOL487>3.0.CO;2-V
  2. Qian, H.-b., Turton, D., Seakins, P.W. and Pilling, M.J. (2000) Dynamic frequency stabilization of infrared diode laser for kinetic studies. Chem. Phys. Lett., 322, 57-64. https://doi.org/10.1016/S0009-2614(00)00395-X
  3. Gagliardi, G. and Gianfrani, L. (2002) Trace-gas analysis using diode lasers in the near-IR and long-path techniques. Opt. Laser Eng., 37, 509-520. https://doi.org/10.1016/S0143-8166(01)00132-4
  4. Zeninari, V., Parvitte, B., Courtois, D., Kapitanov, V.A. and Ponomarev, Yu.N. (2003) Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor. Infrared Phys. Technol., 44, 253-261. https://doi.org/10.1016/S1350-4495(03)00135-X
  5. Yamamoto, K. and Yoshida, N. (2002) High-precision isotopic ratio measurement system for methane ($^{12}CH_3D/^{12}CH_4$, $^{13}CH_4/^{12}CH_4$) by using near-infrared diode laser absorption spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 2699-2707. https://doi.org/10.1016/S1386-1425(02)00025-2
  6. Schlosser, E., Fernholz, T., Teichert, H. and Ebert, V. (2002) In situ detection of potassium atoms in high-temperature coalcombustion systems using near-infrared-diode lasers. Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 2347-2359. https://doi.org/10.1016/S1386-1425(02)00049-5
  7. Durry, G. (2001) Balloon-borne near-infrared diode laser spectroscopy for in situ measurements of atmospheric $CH_4$ and $H_2O$. Spectrochim. Acta A Mol. Biomol. Spectrosc., 57, 1855-1863. https://doi.org/10.1016/S1386-1425(01)00415-2
  8. Ly, S.Y. and Kim, J.K. (2009) Simultaneous real-time assay of copper and cadmium ions by infrared photo diode electrode implanted in the muscle of live fish. J. Biochem. Mol. Toxicol., 23, 256-262. https://doi.org/10.1002/jbt.20287
  9. Lison, D., De Boeck, M., Verougstraete, V. and Kirsch- Volders, M. (2001) Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup. Environ. Med., 58, 619-625. https://doi.org/10.1136/oem.58.10.619
  10. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2006) Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monogr. Eval. Carcinog. Risks Hum., 86, 1-294.
  11. Suganthi, P., Soundarya, N., Stalin, A. and Nedunchezhiyan, S. (2015) Toxicological effect of cobalt chloride on freshwater fish Oreochromis mossambicus. Int. J. Appl. Res., 1, 331-340.
  12. Pettas, I.A. and Karayannis, M.I. (2003) Application of twoway decomposition methods in the simultaneous determination of cobalt, nickel and iron by coupling stopped-flow techniques and CCD detection. Anal. Chim. Acta, 491, 219-229. https://doi.org/10.1016/S0003-2670(03)00804-3
  13. Pakula, M., Swiatkowskib, A., Walczykc, M. and Biniakc, S. (2005) Voltammetric and FT-IR studies of modified activated carbon systems with phenol, 4-chlorophenol or 1,4-benzoquinone adsorbed from aqueous electrolyte solutions. Colloids Surf. A Physicochem. Eng. Asp., 260, 145-155. https://doi.org/10.1016/j.colsurfa.2005.03.013
  14. Song, K., Cha, H., Park, S.-H. and Lee, Y.-I. (2003) Determination of trace cobalt in fruit samples by resonance ionization mass spectrometry. Microchem. J., 75, 87-96. https://doi.org/10.1016/S0026-265X(03)00052-3
  15. Mbaiwa, F.F. and Becker, C.A.L. (2006) Diphosphine substitution in pentakis (arylisocyanide) cobalt(I) complexes; 31P NMR, cyclic voltammetric and ESI mass spectrometry studies. Inorganica Chim. Acta, 359, 1041-1049. https://doi.org/10.1016/j.ica.2005.11.006
  16. Wasinski, F.A. and Andersson, J.T. (2007) Qualitative analysis of phenols and alcohols in complex samples after derivatization to esters of ferrocene carboxylic acid by gas chromatography with mass spectrometric detection. J. Chromatogr. A, 1157, 376-385. https://doi.org/10.1016/j.chroma.2007.04.060
  17. Korolczuk, M., Tyszczuk, K. and Grabarczyk, M. (2005) Adsorptive stripping voltammetry of nickel and cobalt at in situ plated lead film electrode. Electrochem. Commun., 7, 1185-1189. https://doi.org/10.1016/j.elecom.2005.08.022
  18. Farghaly, O.A. (2003) Direct and simultaneous voltammetric analysis of heavy metals in tap water samples at Assiut city: an approach to improve the analysis time for nickel and cobalt determination at mercury film electrode. Microchem. J., 75, 119-131. https://doi.org/10.1016/S0026-265X(03)00090-0
  19. Hutton, E.A., Ogorevc, B., Hocevar, S.B. and Smyth, M.R. (2006) Bismuth film microelectrode for direct voltammetric measurement of trace cobalt and nickel in some simulated and real body fluid samples. Anal. Chim. Acta, 557, 57-63. https://doi.org/10.1016/j.aca.2005.10.003
  20. De Strycker, J., Westbroek, P. and Temmerman, E. (2002) Electrochemical behaviour and detection of Co(II) in molten glass by cyclic and square wave voltammetry. Electrochem. Commun., 4, 41-46. https://doi.org/10.1016/S1388-2481(01)00273-9
  21. Cui, X., Hong, L. and Lin, X. (2002) Electrochemical preparation, characterization and application of electrodes modified with hybrid hexacyanoferrates of copper and cobalt. J. Electroanal. Chem., 526, 115-124. https://doi.org/10.1016/S0022-0728(02)00724-6
  22. Yang, M.-J., Kim, J.-S., Yang, Y.-S., Cho, J.-W., Choi, S.-B., Chung, Y.-H., Kim, Y.-B., Cho, K.-H., Lim, C.-W., Kim, C.-Y. and Song, C.-W. (2008) Pulmonary toxicity and recovery from inhalation of manual metal arc stainless steel welding fumes in rats. Toxicol. Res., 24, 119-127. https://doi.org/10.5487/TR.2008.24.2.119
  23. Ryu, H.-W., Lee, D.H., Won, H.-R., Kim, K.H., Seong, Y.J. and Kwn, S.H. (2015) Influence of toxicologically relevant metals on human epigenetic regulation. Toxicol. Res., 31, 1-9. https://doi.org/10.5487/TR.2015.31.1.001

Cited by

  1. Non-cancer, cancer, and dermal sensitization risk assessment of heavy metals in cosmetics vol.81, pp.11, 2018, https://doi.org/10.1080/15287394.2018.1451191