• Title/Summary/Keyword: toxicity assessment

Search Result 649, Processing Time 0.03 seconds

Acute Toxicity of Pentachlorophenol Sodium Salt, Potassium Dichromate, Sodium Azide to Neocaridina denticulata (Pentachlorophenol Sodium Salt, Potassium Dichromate, Sodium Azide에 대한 새뱅이(Neocaridina denticulata) 급성독성)

  • Lee, Jae-Woo;Moon, Ye-Ryeon;Yoon, Jun-Heon;Choi, Kyung-Hee;Han, Jin-Seok;Ryu, Ji-Sung
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.223-228
    • /
    • 2010
  • Neocaridina denticulata is a small freshwater shrimp indigenous to Korea. As an indigenous species has long-adapted to particular water environments, the species can be a suitable indicator to assess environmental risks caused by hazard chemicals in the particular site. Thus Neocaridina denticulata, a small freshwater shrimp indigenous to Korea, is worth considering for a test species for such purpose. N. denticulata were exposed to pentachlorophenol sodium salt, sodium azide and potassium dichromate using automatic flow-through system for 96 hours. The 96 hr lethal concentrations ($LC_{50}$) of these chemicals were calculated as $0.53{\pm}0.09\;mg/L$, $2.40{\pm}0.61\;mg/L$ and $1.21{\pm}0.09\;mg/L$ respectively and showed relatively small deviation from repetitive test results. When compared with the toxicity values of other species for each chemical, N. denticulata had moderate or high sensitivity to the toxicity of these chemicals. It can be concluded that N. denticulata is a good test species to evaluate acute toxicity of various hazardous chemicals.

Risk Assessment of Dioxin in Japan

  • Kurokawa, Yuji
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.25-35
    • /
    • 2001
  • In 1990, Tolerable Daily Intake (TDI) of 10 pg TCDD/kg/day for dioxins based on carcinogenicity and reproductive toxicity was determined by WHO/EURO, that resulted in the establishment of TDIs in other countries. In Japan, Ministry of Health and Welfare and Environment Agency, respectively established the TDI of 10 pg TCDD/kg/day and Health Risk Assessment Index of 5 pg TCDD/kg/day in 1996. Accumulation of new scientific data, especially by molecular toxicology since 1990, resulted in the reevaluation of TDI by WHO-ECEH and IPCS in May, 1998. At this meeting, it was stressed that \circled1 toxic effects of dioxin is mediated through Ah-receptor in both animals and humans, \circled2 use of ebody burdeni concept is better than the use of traditional NOAEL/UF approach, \circled3 inclusion of coplanar PCBs in the TDI by the use of new WHO-TEF. LOAELs (0.16~200 ng TCDD/kg/day) obtained from reproductive toxicity and immunotoxicity in rats, and neurobehavioral toxicity and induction of endometriosis in rhesus monkeys are calculated to be the body burden of 10~50 ng TCDD/kg that is 14~37 pg TEQ/kg/day as human daily intake. Finally TDI of 1~4 pg TEQ/kg/day was established by applying the UF of 10. In Japan, reproductive toxicity and immunotoxicity in rats were used to obtain LOAELs (100~200 ng TCDD/kg/day). Finally TDI of 4 pg TEQ/kg/day was established in June 1999 by applying the UF of 10 to human daily intake of 43.6 pg TEQ/kg/day which corresponds to the body burden of 86 ng TCDD/kg.

  • PDF

Life cycle impact assessment of the environmental infrastructures in operation phase: Case of an industrial waste incineration plant

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.266-276
    • /
    • 2017
  • A life cycle impact assessment was applied in an industrial waste incineration plant to evaluate the direct and indirect environmental impacts based on toxicity and non-toxicity categories. The detailed life cycle inventory of material and energy inputs and emission outputs was compiled based on the realistic data collected from a local industrial waste incineration plant, and the Korean life cycle inventory and ecoinvent database. The functional unit was the treatment of 1 tonne of industrial waste by incineration and the system boundary included the incineration plant and landfilling of ash. The result on the variation of the impact by the unit processes showed that the direct impact was decreased by 79.3, 71.6, and 90.1% for the processes in a semi dry reactor, bag filter, and wet scrubber, respectively. Considering the final impact produced from stack, the toxicity categories comprised 91.7% of the total impact. Among the toxicity impact categories, the impact in the eco-toxicity category was most significant. A separate estimation of the impact due to direct and indirect emissions showed that the direct impact was 97.7% of the total impact. The steam recovered from the waste heat of the incineration plant resulted in a negative environmental burden.

Acute Toxicity Assessment of New Algicides of Thiazolidinediones Derivatives, TD53 and TD49, Using Ulva pertusa Kjellman

  • Yim, Eun-Chae;Park, In-Taek;Han, Hyo-Kyung;Kim, Si-Wouk;Cho, Hoon;Kim, Seong-Jun
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.4
    • /
    • pp.273-278
    • /
    • 2010
  • Objectives : This study was aimed to examine the acute toxicity assessment of two new algicides, thiazolidinediones derivatives (TD53 and TD49), which were synthesized to selectively control red tide, to the marine ecosystem. Methods : The assessment employed by a new method using Ulva pertusa Kjellman which has been recently accepted as a standard method of ISO. The toxicity was assessed by calculating the $EC_{50}$ (Effective Concentration of 50%), NOEC (No Observed Effect Concentration) and PNEC (Predicted No Effect Concentration) using acute toxicity data obtained from exposure experiments. $EC_{50}$ value of TD49 and TD53 was examined by 96-hrs exposure together with Solutol as a TD49 dispersing agent and DMSO as a TD53 solvent. Results : $EC_{50}$ value of TD53 was $1.65\;{\mu}M$. From the results, values of NOEC and PNEC were calculated to be $0.63\;{\mu}M$ and 1.65 nM, respectively. DMSO under the range of $0{\sim}10\;{\mu}M$, which is same solvent concentration used in examining TD53, showed no toxic effect. $EC_{50}$ value of TD49 was $0.18\;{\mu}M$ and that of Solutol was $1.70\;{\mu}M$. NOEC and PNEC of TD49 were $0.08\;{\mu}M$ and 0.18 nM, respectively and those for Solutol were $1.25\;{\mu}M$ and 1.25 nM, respectively. Conclusions : From the values of NOEC, PNEC of TD53 and TD49, TD49 showed 9 times stronger toxicity than TD53. On the other hand, DMSO showed no toxicity on the Ulva pertusa Kjellman, but Solutol was found to be a considerable toxicity by itself.

Toxicity Assessment and Decomposition Characteristics of Triclosan in an E-beam Irradiation Process (전자빔 공정을 적용한 Triclosan의 제거특성 및 독성평가)

  • Chang, Taebum;Chang, Soonwoong;Lee, Sijin;Cho, Ilhyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.5-11
    • /
    • 2012
  • The abjective of this study was to study the degradation behavior and acute toxicity assessment of Triclosan and acute toxicity under E-beam irradiation. The experiments were conducted to investigate the efficts of the degradation efficiency in the initial concentration of Triclosan and the irradiation capacity of E-beam and the degree of mineralization based on a change of scavenger gas. The biological toxicity test by using on green algae, Pseudokirchneriella Subcapitata was conducted to lead the reducing toxicity. Degradation efficiency of Triclosan was improved when E-beam irradiation intensity was higher. Additionally, the % of TOC removal in each Radical scavenger gas was increased as the follows orders: $N_2O$ > $O_2$ > $N_2$, The toxicity test showed that the toxicity effect after 4 days(96hrs) was decreased by increase of E-beam irradiation intensity.

Risk Assessment of Drometrizole, a Cosmetic Ingredient used as an Ultraviolet Light Absorber

  • Lee, Jae Kwon;Kim, Kyu-Bong;Lee, Jung Dae;Shin, Chan Young;Kwack, Seung Jun;Lee, Byung-Mu;Lee, Joo Young
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.119-129
    • /
    • 2019
  • As the use of cosmetics has greatly increased in a daily life, safety issues with cosmetic ingredients have drawn an attention. Drometrizole [2-(2'-hydroxy-5'-methylphenyl)benzotriazole] is categorized as a sunscreen ingredient and is used in cosmetics and non-cosmetics as a UV light absorber. No significant toxicity has been observed in acute oral, inhalation, or dermal toxicity studies. In a 13-week oral toxicity study in beagle dogs, No observed adverse effect level (NOAEL) was determined as 31.75 mg/kg bw/day in males and 34.6 mg/kg bw/day in females, based on increased serum alanine aminotransferase activity. Although drometrizole was negative for skin sensitization in two Magnusson-Kligman maximization tests in guinea pigs, there were two case reports of consumers presenting with allergic contact dermatitis. Drometrizole showed no teratogenicity in reproductive and developmental toxicity studies in which rats and mice were treated for 6 to 15 days of the gestation period. Ames tests showed that drometrizole was not mutagenic. A long-term carcinogenicity study using mice and rats showed no significant carcinogenic effect. A nail product containing 0.03% drometrizole was nonirritating, non-sensitizing and non-photosensitizing in a test with 147 human subjects. For risk assessment, the NOAEL chosen was 31.75 mg/kg bw/day in a 13-week oral toxicity study. Systemic exposure dosages were 0.27228 mg/kg bw/day and 1.90598 mg/kg bw/day for 1% and 7% drometrizole in cosmetics, respectively. Risk characterization studies demonstrated that when cosmetic products contain 1.0% of drometrizole, the margin of safety was greater than 100. Based on the risk assessment data, the MFDS revised the regulatory concentration of drometrizole from 7% to 1% in 2015. Under current regulation, drometrizole is considered to be safe for use in cosmetics. If new toxicological data are obtained in the future, the risk assessment should be carried out to update the appropriate guidelines.

Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium

  • Nam, Sun-Hwa;Lee, Woo-Mi;An, Youn-Joo
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.129-137
    • /
    • 2012
  • Probabilistic ecological risk assessment (PERA) for deriving ecological protective concentration (EPC) was previously suggested in USA, Australia, New Zealand, Canada, and Netherland. This study suggested the EPC of cadmium (Cd) based on the PERA to be suitable to Korean aquatic ecosystem. First, we collected reliable ecotoxicity data from reliable data without restriction and reliable data with restrictions. Next, we sorted the ecotoxicity data based on the site-specific locations, exposure duration, and water hardness. To correct toxicity by the water hardness, EU's hardness corrected algorithm was used with slope factor 0.89 and a benchmark of water hardness 100. EPC was calculated according to statistical extrapolation method (SEM), statistical extrapolation $method_{Acute\;to\;chronic\;ratio}$ ($SEM_{ACR}$), and assessment factor method (AFM). As a result, aquatic toxicity data of Cd were collected from 43 acute toxicity data (4 Actinopterygill, 29 Branchiopoda, 1 Polychaeta, 2 Bryozoa, 6 Chlorophyceae, 1 Chanophyceae) and 40 chronic toxicity data (2 Actinopterygill, 23 Branchiopoda, 9 Chlorophyceae, 6 Macrophytes). Because toxicity data of Cd belongs to 4 classes in taxonomical classification, acute and chronic EPC (11.07 ${\mu}g/l$ and 0.034 ${\mu}g/l$, respectively) was calculated according to SEM technique. These values were included in the range of international EPCs. This study would be useful to establish the ecological standard for the protection of aquatic ecosystem in Korea.

Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems

  • Chatterjee, Nivedita;Yang, Ji Su;Park, Kwangsik;Oh, Seung Min;Park, Jeonggue;Choi, Jinhee
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.7.1-7.7
    • /
    • 2015
  • Objectives The widely promising applications of graphene nanomaterials raise considerable concerns regarding their environmental and human health risk assessment. The aim of the current study was to evaluate the toxicity profiling of graphene family nanano-materials (GFNs) in alternative in vitro and in vivo toxicity testing models. Methods The GFNs used in this study are graphene nanoplatelets ([GNPs]-pristine, carboxylate [COOH] and amide [$NH_2$]) and graphene oxides (single layer [SLGO] and few layers [FLGO]). The human bronchial epithelial cells (Beas2B cells) as in vitro system and the nematode Caenorhabditis elegans as in vivo system were used to profile the toxicity response of GFNs. Cytotoxicity assays, colony formation assay for cellular toxicity and reproduction potentiality in C. elegans were used as end points to evaluate the GFNs' toxicity. Results In general, GNPs exhibited higher toxicity than GOs in Beas2B cells, and among the GNPs the order of toxicity was pristine > $NH_2$ > COOH. Although the order of toxicity of the GNPs was maintained in C. elegans reproductive toxicity, but GOs were found to be more toxic in the worms than GNPs. In both systems, SLGO exhibited profoundly greater dose dependency than FLGO. The possible reason of their differential toxicity lay in their distinctive physicochemical characteristics and agglomeration behavior in the exposure media. Conclusions The present study revealed that the toxicity of GFNs is dependent on the graphene nanomaterial's physical forms, surface functionalizations, number of layers, dose, time of exposure and obviously, on the alternative model systems used for toxicity assessment.