• Title/Summary/Keyword: toxic soil

Search Result 415, Processing Time 0.026 seconds

Assessment of Risk Based Pollution Level of Pb and Cd in Metal Contaminated Soils Using Biotic Ligand Model (Biotic ligand model에 근거한 중금속 오염지역의 Pb 및 Cd 위해오염도 평가기법 개발)

  • An, Jin-Sung;Jeong, Seul-Ki;Moon, Hee-Sun;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.23-30
    • /
    • 2011
  • Risk based pollution level of Pb and Cd in metal contaminated soils depending on physicochemical properties of soil in a target site was assessed using biotic ligand model. Heavy metal activity in soil solution defined as exposure activity (EA) was assumed to be toxic to Vibrio fischeri and soil organisms. Predicted effective activity (PEA) determined by biotic ligand model was compared to EA value to calculate risk quotient. Field contaminated soils (n = 10) were collected from a formes area and their risk based pollution levels were assessed in the present study using the calculated risk quotient. Concentrations of Pb determined by aqua regia were 295, 258, and 268 mg/kg in B, H and J points and concentrations of Cd were 4.73 and 6.36 mg/kg in G and I points, respectively. These points exceeded the current soil conservation standards. However, risk based pollution levels of the ten points were not able to be calculated because concentrations of Pb and Cd in soil solution were smaller than detection limits or one (i.e., non toxic). It was because heavy metal activity in soil solution was dominant toxicological form to organisms, not a total heavy metal concentration in soil. In addition, heavy metal toxicity was decreased by competition effect of major cations and formation of complex with dissolved organic carbon in soil solution. Therefore, it is essential to consider site-specific factors affecting bioavailability and toxicity for estimating reliable risk of Pb and Cd.

Assessment of health risk associated with arsenic exposure from soil, groundwater, polished rice for setting target cleanup level nearby abandoned mines

  • Lee, Ji-Ho;Kim, Won-Il;Jeong, Eun-Jung;Yoo, Ji-Hyock;Kim, Ji-Young;Lee, Je-Bong;Im, Geon-Jae;Hong, Moo-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.38-47
    • /
    • 2011
  • This study focused on health risk assessment via multi-routes of As exposure to establish a target cleanup level (TCL) in abandoned mines. Soil, ground water, and rice samples were collected near ten abandoned mines in November 2009. The As contaminations measured in all samples were used for determining the probabilistic health risk by Monte-Carlo simulation techniques. The human exposure to As compound was attributed to ground water ingestion. Cancer risk probability (R) via ground water and rice intake exceeded the acceptable risk range of $10^{-6}{\sim}10^{-4}$ in all selected mines. In particular, the MB mine showed the higher R value than other mines. The non-carcinogenic effects, estimated by comparing the average As exposure with corresponding reference dose were determined by hazard quotient (HQ) values, which were less than 1.0 via ground water and rice intake in SD, NS, and MB mines. This implied that the non-carcinogenic toxic effects, due to this exposure pathway had a greater possibility to occur than those in other mines. Besides, hazard index (HI) values, representing overall toxic effects by summed the HQ values were also greater than 1.0 in SD, NS, JA, and IA mines. This revealed that non-carcinogenic toxic effects were generally occurred. The As contaminants in all selected mines exceeded the TCL values for target cancer risk ($10^{-6}$) through ground water ingestion and rice intake. However, the As level in soil was greater than TCL value for target cancer risk via inadvertent soil ingestion pathway, except for KK mine. In TCL values for target hazard quotient (THQ), the As contaminants in soil did not exceed such TCL value. On the contrary, the As levels in ground water and polished rice in SD, NS, IA, and MB mines were also beyond the TCL values via ground water and rice intake. This study concluded that the health risks through ground water and rice intake were greater than those though soil inadvertent ingestion and dermal contact. In addition, it suggests that the abandoned mines to exceed the risk-based TCL values are carefully necessary to monitor for soil remediation.

Dispersion and Enrichment of Potentially Toxic Elements in the Chungjoo Area Covered with Black Shales in Korea (충주지역 흑색셰일 분포지역에서의 잠재적 독성원소들의 분산과 부화)

  • Lee, Jin-Soo;Chon, Hyo-Taek;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.495-508
    • /
    • 1996
  • This study had three purposes: (1) to investigate dispersion and enrichment level of potentially toxic elements; (2) to identify uranium-bearing minerals in black shales; and (3) to assess the chemical speciation of heavy metals in soils and sediments. Rock, surface soil and stream sediment samples were collected in the Chungjoo area covered with black shales in Korea. These samples were analyzed for multi-elements using INAA and ICP-AES. The maximum abundance of U in black shales is 56 ppm and radioactivity counts up to 240CPM. Molybdenum, V, Ba, Cu, and Pb are enriched in black shales and most of soils show high concentrations of U, Mo, Ba, Cu, Pb and Zn. Concentrations of potentially toxic elements decrease in the order of mountain soil > farmland soil > paddy soil. Enrichment index of soils and sediments are calculated and higher than 1.0 in the black shale area with the highest value of 6.1. In order to identify U-bearing minerals, electron probe micro analysis was applied, and uraninite and brannerite in black shale were found. Uraninite grains are closely associated with monazite or pyrite with the size of $2{\mu}m$ to $10{\mu}m$ in diameter whereas brannerite occurs as $50{\mu}m$ euhedral grains. With the results of sequential extraction scheme, residual fractions of Cu, Pb and Zn in soils are mainly derived from weathering of black shale but Cu, Pb and Zn in sediments are present as non-residual fractions. Lead is predominantly present as oxidizable phase in soils whereas Zn is in exchageable/water-acid soluble phase in sediments.

  • PDF

Application of Practical Immobilizing Agents for Declining Heavy Metal (loid)s Accumulation by Agricultural Crop (Allium wakegi Araki)

  • Seo, Byoung-Hwan;Kim, Hyun-Uk;Lwin, Chaw Su;Kim, Hyuck Soo;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.226-234
    • /
    • 2017
  • In order to reduce the accumulation of toxic metals (As, Cd and Pb) in the chives, various immobilizing agents such as a soil pH change-inducing immobilizing agent (lime), sorption agent (compost, spent mushroom compost), soil pH change and sorption agent (biochar) and, dissolved organic carbon (DOC) coagulator (gypsum) and uncontaminated soil were applied to the contaminated soils in isolation and in combination. Then chives were grown and determined for As, Cd and Pb concentrations accumulated in the edible part at harvest. The Cd and Pb concentrations of the chive plant grown in the contaminated soil (no treatment) exceeded the legislated Korean guideline values (Cd: $0.05mg\;kg^{-1}$, Pb $0.1mg\;kg^{-1}$) and As concentration ($21mg\;kg^{-1}$) was 1,000 times higher than chives plant grown in uncontaminated environment in Korea. Application of lime and gypsum significantly reduced As, Cd and Pb concentrations in all chives examined, due to the increased soil pH and decreased soil DOC. Also, application of combination treatments involving DOC coagulator such as gypsum together with lime decreased As, Cd and Pb concentrations from 21, 1.3 and $9.7mg\;kg^{-1}$ to 2.1, 0.1 and $1.1mg\;kg^{-1}$, respectively. Consequently, it was concluded that pH change-inducing immobilizing agent (lime) which was already well known and DOC coagulator such as gypsum could be used as a promising immobilizing agent for safer chives plant production.

Effects of Water Content and Temperature on Equilibrium Distribution of Organic Pollutants in Unsaturated Soil (토양내 유기독성물질의 평형분포에 미치는 토양수분과 온도의 영향)

  • Koo, Ja Kong;Shin, Hang Sik;Kim, Dong Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.119-128
    • /
    • 1988
  • The purpose of this research is to quantify the effects of water content(0.3~1.255%) and temperature ($4{\sim}40^{\circ}C$) on the equilibrium distribution of toxic organic pollutant in unsaturated soil. The priority pollutants, Dichloromethane and 1, 1, 1-Trichloroethane were selected as toxic organic pollutants and the Korean decomposed granite soil as the experimental soil media. Two models were developed on the basis of shapes of soil water distribution in unsaturated soil and compared; complete surface coating(model I) vs. spot clustering (model II). From the experiment, a large decrease in the values of effective partition coefficient ($K_{eff}$) was observed as the water content increased. As the temperature increased, the $K_{eff}$ values decreased, and this effect was magnified at lower water contents. The values of $K_{eff}$ were correlated better with the estimated values using model II. Thus it was experimentally proved that the soil water tends to enclose the soil grain partly at lower water contents.

  • PDF

Effects of Phosphogypsum on the Growth of Oriental Melon and Soil Properties (시설재배 참외의 생육과 토양 특성에 미치는 인산석고의 효과)

  • Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.334-339
    • /
    • 2005
  • Although phosphogypsum can have profound effects on both the physical and chemical properties of certain soils with supplying the essential elements, no widespread use of by-product phosphogypsum will be made unless such uses pose no threat to the public health and soil contaminations. This study was conducted to evaluate the effects of phosphogypsum on the growth of oriental melon and soil properties in plastic film house. Phosphogypsum was treated at the rate of $70kg\;CaO\;10a^{-1}$ and the effects were compared with the treatment of Ca-Mg carbonate. In the treatment of phosphogypsum, early growth of oriental melon was significantly increased comparing to the growth in the Ca-Mg carbonate treatment. Total fruit yield was not different between the treatments of phosphogypsum and Ca-Mg carbonate, but marketable fruit yield was higher in the phosphogypsum treatment. Although Ca and S contents in oriental melon were increased in the phosphogypsum treatment, contents of toxic heavy metals including As, Cd, Cr, Cu, and Pb were not different between the two treatments. Also, soil pH and contents of extractable toxic metals in the soil were not significantly different between the two treatments after the experiment. These results suggest that phosphogypsum can be a valuable substitute for lime materials in high pH soils of plastic film house.

X-ray Micro-imaging of Arsenic Absorption of Sap Flow in Xylem Vessels of Pteris (X-ray 영상기법을 이용한 비소 흡수가 고사리 내부 수액 거동에 미치는 영향 연구)

  • Lee, Jin-Pyoung;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 2007
  • The global environment is deteriorating at an alarming rate, despite of enhanced international environmental regulation. Many studies have been performed to reduce toxic pollutants. Recently, plant-based phytoremediation technology for moving toxic contaminants from soil and water has been receiving large attention. Arsenic-contaminated soil is one of the major pollutant sources for drinking water. Pteris erotica has been known as a hyper-accumulator of arsenic from soils. In this study, we investigated the effect of arsenic absorption on sap flow inside xylem vessels of Pteris. The synchrotron X-ray micro-imaging technique was employed to monitor the refilling process of water containing arsenic inside the xylem vessels of Pteris's leaves and stems non-invasively. The captured phase-contrast X-ray images show both anatomy of internal structure and transport of water inside Pteris. The exposure of Pteris to arsenic solution was found to increase largely the water raise speed in xylem vessels. The present results would provide important information needed for understanding the mechanisms of accumulation and transportation of toxic materials in plants.

Determination of Dioxin-like Components in the School Waste Incinerator Residues by EROD-microbioassay (EROD-microbioassay에 의한 학교 소각로 잔재 중 다이옥신 유사물질의 측정)

  • 정규혁;오승민;윤완진
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.11-17
    • /
    • 2000
  • There are among the most relevant toxic emissions from incinerators such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (PCBs). Induction of cytochrome P4501A1 catalyzed 7-ethoxyresorufin O-deethylase(EROD) activity in mammalian cell culture(EROD bioassay) is thought to be a selective and sensitive parameter used for the quantification of dioxin-like components. In this study, the toxic emissions from several school waste incinerators were evaluated by determination of CYPIA catalytic activity and cytotoxicity using cell culture microbioassay. The incinerator residue and soil samples were collected from the schools located in Kyunggi province from April to June 1999. The samples were extracted in a Soxhlet apparatus using toluene for 20 hours. In order to clean-up, concentrated crude extracts were applied to basic alumina column. The EROD activities of extracts in the H4IIE cells were from 1.91$\pm$0.32 ng-TEQ/g to 24.54$\pm$3.48 ng-TEQ/g of biochemical-TEQ value. In soil samples, CYP1A catalytic activity was 0.09~0.64 ng-TEQ/g. EROD bioassay, seems to be a useful short-term bioassay when information about the biological response of complex environmental samples is needed. Although further study is needed, these results indicate that the potent toxic emissions are produced from school waste semi-incinerators.

  • PDF

The Priority of Environmental Problems in Korea (우리나라의 환경문제 우선순위 도출 - 환경전문가를 중심으로 -)

  • 신동천;임영욱;박종연;장은아;김진용;박성은;조성준
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.4
    • /
    • pp.165-174
    • /
    • 1999
  • This study was conducted to analyze the priority of environmental problems in Korea by investigating the environmental professionals' perception. The delphi technique was applied to identify their risk perception towards some specific items related with pollution. A standardized questionnaire on environmental problems and their priorities was used to 74 subjects. In the questionnaire, the environmental problems were divided into the general ones,9 items, and the specific ones,30 items. Also, the perception was associated with two points of view which were the risk on general human health or ecosystem, and on the present situation in Korea. The priority of risk from general environmental problems on human health or ecosystem was analyzed in the order of 'water pollution', 'air pollution', 'soil contamination', 'waste', 'toxic chemical pollutants', 'food contamination', 'ocean contamination', 'odor pollution', and 'noise pollution'. The priority of risk on the present situation in Korea was analyzed in the order of 'water pollution','air pollution','waste','toxic chemical pollutants','food contamination','soil contamination','ocean contamination','odor pollution', and 'noise pollution'. And these priorities were significantly related with the characteristics of respondents such as sex, age, and major concerned area. However, for the first five priorities of risk from the specific environmental problems on human health or ecosystem, the environmental professionals agreed with 'automotive vehicle exhaust', 'domestic and industrial source pollutants to surface water', '$CO_2$nd g1oba1 warming effect','toxic air pollutant' and 'industrial source air pollution'. The priorities of risk on the present situation in Korea were similar to these results.

  • PDF

Uptake and Phytotoxicity of TNT in Onion Plant

  • Kim, Jaisoo;Yavuz Corapcioglu;Malcolm C. Drew
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.102-106
    • /
    • 2003
  • The uptake of $^{14}C$-2, 4, 6-trinitrotoluene (TNT) in hydroponics was studied using onion plants. Of the total TNT mass (5 $\mu\textrm{M}$ concentration), 75% was in the roots, 4.4% in the leaves, and 21% in the external solution at 2 days, The percent distribution in roots was lower with higher concentration in the external solution, but in leaves it was comparable at all concentrations (5-500 $\mu\textrm{M}$). Root concentration factor (RCF) in hydroponics was more than 85 in constant hydroponic experiment (CHE) at 5 $\mu\textrm{M}$ and 150 in non-constant hydroponic experiment (NHE) at 5 $\mu\textrm{M}$. The maximum RCF values in the hydroponic system were greater with lower solution concentration. Transpiration stream concentration factor (TSCF) values in the present study (NHE only: 0.31-0.56) were relatively similar to the values with predicted values (0.43-0.78), increasing with higher external TNT concentration. For phytotoxicity tested in hydroponics and wet paper method, 500 $\mu\textrm{M}$ was toxic to onion plant, 50 $\mu\textrm{M}$ was non-toxic for plant growth but limited the transpiration rate, and 5 $\mu\textrm{M}$ was non-toxic as control.

  • PDF