• 제목/요약/키워드: toxic proteins

검색결과 151건 처리시간 0.024초

Regulation of RIP3 protein stability by PELI1-mediated proteasome-dependent degradation

  • Park, Han-Hee;Morgan, Michael J.;Kang, Ho Chul;Kim, You-Sun
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.484-485
    • /
    • 2018
  • Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is a serine-threonine kinase largely essential for necroptotic cell death; it also plays a role in some inflammatory diseases. High levels of RIP3 are likely sufficient to activate necroptotic and inflammatory pathways downstream of RIP3 in the absence of an upstream stimulus. For example, we have previously detected high levels or RIP3 in the skin of Toxic Epidermal Necrolysis patients; this correlates with increased phosphorylation of MLKL found in these patients. We have long surmised that there are molecular mechanisms to prevent anomalous activity of the RIP3 protein, and so prevent undesirable cell death and inflammatory effects when inappropriately activated. Recent discovery that Carboxyl terminus of Hsp 70-Interacting Protein (CHIP) could mediate ubiquitylation- and lysosome-dependent RIP3 degradation provides a potential protein that has this capacity. However, while screening for RIP3-binding proteins, we discovered that pellino E3 ubiquitin protein ligase 1 (PELI1) also interacts directly with RIP3 protein; further investigation in this study revealed that PELI1 also targets RIP3 for proteasome-dependent degradation. Interestingly, unlike CHIP, which targets RIP3 more generally, PELI1 preferentially targets kinase active RIP3 that has been phosphorylated on T182, subsequently leading to RIP3 degradation.

A Lectin with Mycelia Differentiation and Antiphytovirus Activities from the Edible Mushroom Agrocybe aegerita

  • Sun, Hui;Zhao, Chen Guang;Tong, Xin;Qi, Yi Peng
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.214-222
    • /
    • 2003
  • A lectin named AAL has been purified from the fruiting bodies of the edible mushroom Agrocybe aegerita. AAL consisted of two identical subunits of 15.8 kDa, its pI was about 3.8 determined by isoelectric focusing, and no carbohydrate was discerned. Being treated by pyrogultamate aminopeptidase, the blocked N-terminus of AAL was sequenced as QGVNIYNI. AAL agglutinated human and animal erythrocytes regardless of blood type or animal species. Its hemagglutinating activity was unaffected by acid or alkali treatment and demetalization or addition of divalent metals $Mg^{2+}$, $Ca^{2+}$ and $Zn^{2+}$. AAL was toxic to mice: its LD50 was 15.85 mg per kilogram body weight by intraperitoneal injection. In this study, two novel activities of AAL were proved. It showed inhibition activity to infection of tobacco mosaic virus on Nicotiana glutinosa. The result of IEF suggested that AAL attached to TMV particles. Mycelia differentiation promotion was the other interesting activity. AAL promoted the differentiation of fruit body primordia from the mycelia of Agrocybe aegerita and Auricularia polytricha. AAL antiserum was prepared and immunologically cross-reactived with several proteins from five other kinds of mushrooms. These results suggested that AAL probably was a representative of a large protein family, which plays important physiological roles in mushroom.

Implications of NQO1 in cancer therapy

  • Oh, Eun-Taex;Park, Heon Joo
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.609-617
    • /
    • 2015
  • NAD(P)H:quinone oxidoreductase (NQO1), an obligatory two-electron reductase, is a ubiquitous cytosolic enzyme that catalyzes the reduction of quinone substrates. The NQO1- mediated two-electron reduction of quinones can be either chemoprotection/detoxification or a chemotherapeutic response, depending on the target quinones. When toxic quinones are reduced by NQO1, they are conjugated with glutathione or glucuronic acid and excreted from the cells. Based on this protective effect of NQO1, the use of dietary compounds to induce the expression of NQO1 has emerged as a promising strategy for cancer prevention. On the other hand, NQO1-mediated two-electron reduction converts certain quinone compounds (such as mitomycin C, E09, RH1 and β-lapachone) to cytotoxic agents, leading to cell death. It has been known that NQO1 is expressed at high levels in numerous human cancers, including breast, colon, cervix, lung, and pancreas, as compared with normal tissues. This implies that tumors can be preferentially damaged relative to normal tissue by cytotoxic quinone drugs. Importantly, NQO1 has been shown to stabilize many proteins, including p53 and p33ING1b, by inhibiting their proteasomal degradation. This review will summarize the biological roles of NQO1 in cancer, with emphasis on recent findings and the potential of NQO1 as a therapeutic target for the cancer therapy.

Amelioration of $Cd^{++}$ Toxicity by $Ca^{++}$ on Germination, Growth and Changes in Anti-Oxidant and Nitrogen Assimilation Enzymes in Mungbean(Vigna mungo) Seedlings

  • Kochhar Sunita;Ahmad Gayas;Kochhar Vinod Kumar
    • Journal of Plant Biotechnology
    • /
    • 제6권4호
    • /
    • pp.259-264
    • /
    • 2004
  • The present study describes the ameliorating effect of $Ca^{++}\;on\;Cd^{++}$ toxicity on the germination, early growth of mungbean seedlings, nitrogen assimilation enzyme. s-nitrate reductase (NR), nitrite reductase (NIR), anti-oxidant enzymes (POD, CAT and SOD) and on the accumulation of hydrogen peroxide and sulphydryls. $Cd^{++}$ inhibited seed germination and root and shoot length of seedlings. While NR activity was down- regulated, the activities of NIR, POD and SOD were up- regulated with $Cd^{++}$ treatment. $Cd^{++}$ treatment also increased the accumulation of sulphydryls and peroxides, which is reflective of increased thiol rich proteins and oxidative stress. $Ca^{++}$ reversed the toxic effects of $Cd^{++}$ on germination and on early growth of seedlings as well as on the enzyme activities, which were in turn differentially inhibited with a combined treatment with calcium specific chelator EGTA. The results indicate that the external application of $Ca^{++}$ may increase the tolerance capacity of plants to environmental pollutants by both up and down regulating metabolic activities. Abbreviations: $Cd^{++}= cadmium,\;Ca^{++} = calcium$, NR= nitrate reductase, NIR=nitrite reductase, POD = peroxidse, SOD= superoxide dismutase, CAT= catalase, EGTA= ethylene glycol-bis( $\beta-aminoethyl ether$)-N,N,N,N-tetraacetic acid.

Pharmacological Analysis of Vorinostat Analogues as Potential Anti-tumor Agents Targeting Human Histone Deacetylases: an Epigenetic Treatment Stratagem for Cancers

  • Praseetha, Sugathan;Bandaru, Srinivas;Nayarisseri, Anuraj;Sureshkumar, Sivanpillai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1571-1576
    • /
    • 2016
  • Alteration of the acetylation status of chromatin and other non-histone proteins by HDAC inhibitors has evolved as an excellent epigenetic strategy in treatment of cancers. The present study was sought to identify compounds with positive pharmacological profiles targeting HDAC1. Analogues of Vorinostat synthesized by Cai et al, 2015 formed the test compounds for the present pharmacological evaluation. Hydroxamte analogue 6H showed superior pharmacological profile in comparison to all the compounds in the analogue dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify compounds with even better high affinity and pharmacological profile than 6H and Vorinostat, virtual screening was performed. A total of 83 compounds similar to Vorinostat and 154 compounds akin to analogue 6H were retrieved. SCHEMBL15675695 (PubCid: 15739209) and AKOS019005527 (PubCid: 80442147) similar to Vorinostat and 6H, were the best docked compounds among the virtually screened compounds. However, in spite of having good affinity, none of the virtually screened compounds had better affinity than that of 6H. In addition SCHEMBL15675695 was predicted to be a carcinogen while AKOS019005527 is Ames toxic. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report Vorinostat hydroxamate analogue 6H to be a potential candidate for HDAC inhibition in treatment of cancers through an epigenetic strategy.

Gene Medicine : A New Field of Molecular Medicine

  • Kim, Chong-Kook;Haider, Kh-H;Lim, Soo-Jeong
    • Archives of Pharmacal Research
    • /
    • 제24권1호
    • /
    • pp.1-15
    • /
    • 2001
  • Gene therapy has emerged as a new concept of therapeutic strategies to treat diseases which do not respond to the conventional therapies. The principle of gene therapy is to Introduce genetic materials into patient cells to produce therapeutic proteins in these cells. Gene therapy is now at the stage where a number of clinical trials have been carried out to patients with gene-deficiency disease or cancer. Genetic materials for gene therapy are generally composed of gene expression system and gene delivery system. For the clinical application of gene therapy in a way which conventional drugs are used, researches have been focused on the design of gene delivery system which can offer high transfection efficiency with minimal toxicity. Currently, viral delivery systems generally provide higher transfection efficiency compared with non-viral delivery systems while non-viral delivery systems are less toxic, less immunogenic and manufacturable in large scale compared with viral systems. Recently, novel strategies towards the design of new non-viral delivery system, combination of viral and non-viral delivery systems and targeted delivery system have been extensively studied. The continued effort in this area will lead us to develop gene medicine as "gene as a drug" in the near future.

  • PDF

Rescue of Oxidative Stress by Molecular Chaperones in Yeast

  • Ueom Jeonghoon;Kang Sooim;Lee Kyunghee
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2002년도 추계학술대회
    • /
    • pp.76-78
    • /
    • 2002
  • Heat shock proteins (HSPs) are induced in most living cells by mild heat treatment, ethanol, heavy metal ions and hypoxia. In yeast Saccharomyces cerevisiae, mild heat pretreatment strongly induces Hsp104 and thus provide acquired thermotolerance. The ability of hsp104 deleted mutant $({\triangle}hsp104)$ to acquire tolerance to extreme temperature is severely impaired. In providing thermotolerance, two ATP binding domains are indispensible, as demonstrated in ClpA and ClpB proteases of E. coli. The mechanisms by which Hsp104 protects cells from severe heat stress are not yet completely elucidated. We have investigated regulation of mitochondrial metabolic pathways controlled by the functional Hsp104 protein using $^{13}C_NMR$ spectroscopy and observed that the turnover rate of TCA cycle was enhanced in the absence of Hsp104. Production of ROS, which are toxic to kill cells radiply via oxidative stress, was also examined by fluorescence assay. Mitochondrial dysfunction was manifested in increased ROS levels and higher sensitivity for oxidative stress in the absence of Hsp104 protein expressed. Finally, we have identified mitochondrial complex I and Ferritin as binding protein(s) of Hsp104 by yeast two hybrid experiment. Based on these observations, we suggest that Hsp104 protein functions as a protector of oxidative stress via either keeping mitochondrial integrity, direct binding to mitochonrial components or regulating metal-catalyzed redox chemistry.

  • PDF

뇌해마배양조직을 이용한 치매 뇌손상 모델에 대한 소풍순기원(疏風順氣元)과 황련해독탕(黃連解毒湯) 처방약재의 신경보호효과 연구 (Investigation of Neuroprotective Effect Using Herb Medicine against Dementia related Brain Damage in Organotypic Hippocampal Slice Culture)

  • 곡경내;김종우;정선용;박지호
    • 동의신경정신과학회지
    • /
    • 제21권1호
    • /
    • pp.43-57
    • /
    • 2010
  • Objectives: This study was designed to assess neuroprotective effects of herb medicine against Alzhheimer's disease related brain damage in organotypic hippocampal slice culture. Methods: We induced dementia related brain damage in organotypic hippocampal slices by $\beta$-amyloid. Those slices were treated with herb medicines - Hwangryeonhaedoktang, Sopungsoongiwon. Using by PI staining, the extents of cell death were assessed. After that, we selected the best effective one among those herb medicines and the major components of that medicine were studied to reveal neuroprotective effects and related proteins by using PI stating. Results: In PI staining, Sopungsoongiwon is the best effective herb medicine between Hwangryeonhaedoktang and Sopungsoongiwon. Notopterygii Rhizoma, Corni Fructus, Areca Catechu, Aurantii Fructus Immaturus, Plantaginis Semen is the best effective one among the components of Sopungsoongiwon. Conclusions: We suggested that purgative effect would be the best effetive medicine on dementia related brain damage between clearing heat and toxic materials.

Expression of Mosquitocidal Bacillus sphaericus Binary Toxin and B. thuringiensis cry11B Genes in B. thuringiensis 407

  • Park, Hyun-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제2권2호
    • /
    • pp.185-189
    • /
    • 2001
  • Wild type Bacilus thuringiensis subsp. israelensis and B. sphaericus toxins have been used separately as active in ingredients for bacterial insecticides to control mosquito larvae due to their comparable toxicity to chemical insecticides. Cry11B, recently cloned from B. thuringiensis subsp. jegathesan, shows higher toxicity against three major species of mosquito larvae than Cry11A, one of the major component of B. thuringiensis subsp. israelensis inclusion body. To determine whether the combination of cry11B and B. sphaericus binary toxins is as toxic as B. thuringiensis subsp. israelensis parental strain, cry11B and B. sphaericus binary toxins genes were co-expressed as an operon using cytlA promoters/STAB-SD hybrid expression system in B. thuringiensis subsp. israelensis acrystalliferous strain 4Q7. However, unexpectedly, B. sphaericus binary toxins were barely produced, whereas relatively large amount of Cry11B was produced. When this strain was grown in four different media, NB+G and Peptonized Milk produced more toxin proteins and spores per unit of media than GYS and G-Tris. Toxicity of this strain against fourth instar Culex quinquefasciatus was ranged from of 8.3 to 45.7 ng/ml, with NB+G culture being the highest, and GYS culture was the lowest.

  • PDF

Autophagy in Ischemic Livers: A Critical Role of Sirtuin 1/Mitofusin 2 Axis in Autophagy Induction

  • Chun, Sung Kook;Go, Kristina;Yang, Ming-Jim;Zendejas, Ivan;Behrns, Kevin E.;Kim, Jae-Sung
    • Toxicological Research
    • /
    • 제32권1호
    • /
    • pp.35-46
    • /
    • 2016
  • No-flow ischemia occurs during cardiac arrest, hemorrhagic shock, liver resection and transplantation. Recovery of blood flow and normal physiological pH, however, irreversibly injures the liver and other tissues. Although the liver has the powerful machinery for mitochondrial quality control, a process called mitophagy, mitochondrial dysfunction and subsequent cell death occur after reperfusion. Growing evidence indicates that reperfusion impairs mitophagy, leading to mitochondrial dysfunction, defective oxidative phosphorylation, accumulation of toxic metabolites, energy loss and ultimately cell death. The importance of acetylation/deacetylation cycle in the mitochondria and mitophagy has recently gained attention. Emerging data suggest that sirtuins, enzymes deacetylating a variety of target proteins in cellular metabolism, survival and longevity, may also act as an autophagy modulator. This review highlights recent advances of our understanding of a mechanistic correlation between sirtuin 1, mitophagy and ischemic liver injury.