• Title/Summary/Keyword: toxic metal

검색결과 496건 처리시간 0.025초

철, 구리, 은염이 첨착된 활성탄의 제조 (Manufacture of Iron, Copper and Silver Ions Impregnated Activated Carbon)

  • 박승조;최성우
    • 대한환경공학회지
    • /
    • 제28권4호
    • /
    • pp.384-388
    • /
    • 2006
  • 본 연구는 극성 및 독성물질에 대한 활성탄의 흡착력을 향상시키기 위하여, 활성탄을 산 처리 후 활성탄 50 g에 0.1 M $FeSO_4{\cdot}7H_2O,\;CuSO_4{\cdot}5H_2O,\;AgNO_3$ 용액을 300 mL 첨가하여 jar tester를 이용하여 60 rpm의 속도로 1시간 교반시켜 철, 은, 구리 이온을 첨착하였다. 금속 첨착과정으로 제조한 금속 첨착활성탄의 표면 성상 및 화학적 특성을 규명하기 위하여 비표면적, 세공용적 및 분포, 주사현미경 촬영, 흡착등온 등의 실험을 하였다. 산 처리 활성탄에 철, 구리, 은을 첨착할 경우 미세세공이 중간세공과 거대세공으로 전환되어 금속 첨착량이 약 1.3배 정도 증가하였고 금속 첨착활성탄내에서 미세세공에 의한 물리적 흡착과 침착된 금속 이온에 의한 화학적 흡착이 동시에 가능하였다.

아연결핍이 흰쥐에서 metallothionein의 발현과 카드뮴의 흡수 및 분포에 미치는 영향 (The Effects of Dietary Zinc Deficiency on the Expression of Metallothionein, Absorption and Distribution of Cadmium in Rats)

  • 전용욱;최병선;박정덕
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권2호
    • /
    • pp.191-200
    • /
    • 2004
  • Zinc (Zn) is an essential element in biological process, however inadequate Zn status in general population have been recognized. To update the knowledge for Zn-cadmium (Cd) interaction, we studied the intestinal uptake and transport, and the expression of metal transporter proteins (divalent metal transporter 1, DMT1 ; metal transporter protein 1, MTP1 ; zinc transporter 1, ZnTl ; metallothionein 1 , MT1) in duodenum after Cd exposure using Zn deficient animal model. Rats were led Zn deficient (ZnD, 0.5-1.0 mgZn/kg) or Zn supplemented (ZnS, 50mg Zn/kg) diet for 4 weeks, and followed single administration of $^{109}$ CdCl$_2$orally. The body Zn flatus and tissue Cd concentration were determined at 24 hrs after Cd administration. Total body burden of Cd and Cd absorption index (AI, %) were estimated based on the tissue Cd analyzed. DMT1, MTP1, ZnTl and MT1 mRNA were analyzed by using RT-PCR method. Feeding of Zn deficient diet for 4 weeks produced a reduced body weight gain and a depletion of body Zn. Tissue Cd concentration, body burden of Cd and Cd absorption index were higher in the ZnD diet fed rats than the ZnS diet red rats. Especially, Cd concentration in the small intestine (duodenum, jejunum and ileum) and the colon of FeD diet fed rats were higher markedly than in the FeS diet group. The expression levels of DMT1, MTP1 and ZnT1 mRNA in FeD diet fed rats were similar to the FeS diet. The level of MT1 mRNA expression was significantly lower in the FeD than the FeS diet fed rats. Taken together, theses results indicate that Zn deficiency in diet induce an increased intestinal absorption and tissue retention of Cd, and down -regulate the MT1 expression in the intestine which might be play a part of role in Cd absorption and transport in mammalian. These findings suggest that deficiency of essential metal could be enhanced the toxicity of toxic, non-esstial metals through the metal-metal interaction.

소성된 Mg-Al Layered Double Hydroxide에 의한 비소(V)의 흡착 (Sorption of Arsenate by the Calcined Mg-Al Layered Double Hydroxide)

  • 서영진;강윤주;최정;김준형;박만
    • 한국토양비료학회지
    • /
    • 제41권6호
    • /
    • pp.369-373
    • /
    • 2008
  • Mg-Al LDH를 이용하여 수용액중 비소와의 반응특성을 규명하고 비소 제거제로서 활용가능성을 규명하기 위하여 비소의 흡착특성, 제거효율 및 제거기작에 대한 조사를 하였다. Mg-Al LDH는 소성(calcination)에 의한 탈수로 Mg oxide 형태를 나타내었고 비소를 흡착시킨 결과 반응 22시간 이후에 흡착평형에 도달하였으며 흡착량은 약 530 mmol/kg정도였다. 반응농도별 LDH의 등온흡착은 L-type의 흡착반응을 나타내었다. 소성된 Mg-Al LDH는 용액중에서 재수화(rehydration) 될 때 비소가 LDH의 구조의 복구과정(reconstruction)에서 이온교환 반응에 의해 층간삽입이 일어나는 것으로 나타났다. LDH에 대한 arsenate와 phosphate, arsenate와 sulfate의 경쟁흡착 결과 arsenate와 phosphate의 선택성은 비슷한 편이었고, arsenate는 sulfate에 비해 선택성이 우수하였다. 따라서 calcined Mg-Al LDH는 비교적 높은 비소 제거효율을 나타내므로 비소 제거제로서 사용 가능성이 매우 높은 것으로 판단된다.

Application of Practical Immobilizing Agents for Declining Heavy Metal (loid)s Accumulation by Agricultural Crop (Allium wakegi Araki)

  • Seo, Byoung-Hwan;Kim, Hyun-Uk;Lwin, Chaw Su;Kim, Hyuck Soo;Kim, Kwon-Rae
    • 한국토양비료학회지
    • /
    • 제50권4호
    • /
    • pp.226-234
    • /
    • 2017
  • In order to reduce the accumulation of toxic metals (As, Cd and Pb) in the chives, various immobilizing agents such as a soil pH change-inducing immobilizing agent (lime), sorption agent (compost, spent mushroom compost), soil pH change and sorption agent (biochar) and, dissolved organic carbon (DOC) coagulator (gypsum) and uncontaminated soil were applied to the contaminated soils in isolation and in combination. Then chives were grown and determined for As, Cd and Pb concentrations accumulated in the edible part at harvest. The Cd and Pb concentrations of the chive plant grown in the contaminated soil (no treatment) exceeded the legislated Korean guideline values (Cd: $0.05mg\;kg^{-1}$, Pb $0.1mg\;kg^{-1}$) and As concentration ($21mg\;kg^{-1}$) was 1,000 times higher than chives plant grown in uncontaminated environment in Korea. Application of lime and gypsum significantly reduced As, Cd and Pb concentrations in all chives examined, due to the increased soil pH and decreased soil DOC. Also, application of combination treatments involving DOC coagulator such as gypsum together with lime decreased As, Cd and Pb concentrations from 21, 1.3 and $9.7mg\;kg^{-1}$ to 2.1, 0.1 and $1.1mg\;kg^{-1}$, respectively. Consequently, it was concluded that pH change-inducing immobilizing agent (lime) which was already well known and DOC coagulator such as gypsum could be used as a promising immobilizing agent for safer chives plant production.

Protection of Metal Stress in Saccharomyces cerevisiae: Cadmium Tolerance Requies the Presence if Two ATP-Binding Domains of Hsp 104 Protein

  • 이경희;엄정훈
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권5호
    • /
    • pp.514-518
    • /
    • 2001
  • We have explored the importance of two ATP binding domains of Hsp104 protein in protection of yeast cells from cadmium exposure. In the previous study we have discovered that the presence of two ATP binding sites was essential in providing heat sh ock protection as well as rescuing cells from oxidative stress. In this paper we first report wild type cell with functional hsp104 gene is more resistant to cadmium stress than hsp104-deleted mutant cell, judging from decrease in survival rates as a result of cadmium exposure. In order to demonstrate functional role of two ATP binding sites in cadmium defense, we have transformed both wild type (SP1) and hyperactivated ras mutant (IR2.5) strains with several plasmids differing in the presence of ATP binding sites. When an extra copy of functional hsp104 gene with both ATP binding sites was overexpressed with GPD-promoter, cells showed increased survival rate against cadmium stress than mutants with ATP binding sites changed. The degree of protection in the presence of two ATP binding sites was similarly observed in ira2-deleted hyperactivated ras mutant, which was more sensitive to oxidative stress than wild type cell. We have concluded that the greater sensitivity to cadmium stress in the absence of two ATP binding sites is attributed to the higher concentration of reactive oxygen species (ROS) produced by cadmium exposure based on the fluorescence tests. These findings, taken all together, imply that the mechanism by which cadmium put forth toxic effects may be closely associated with the oxidative stress, which is regulated independently of the Ras-cAMP pathway. Our study provides a better understanding of cadmium defense itself and cross-talks between oxidative stress and metal stress, which can be applied to control human diseases due to similar toxic environments.

구연산철 환원 조건하에서 Shewanella sp. HN-41에 의한 6가 크롬의 환원 (Reduction of Hexavalent Chromium by Shewanella sp. HN-41 in the Presence of Ferric-Citrate)

  • 박혜민;곽진협;이지훈
    • 한국환경농학회지
    • /
    • 제42권3호
    • /
    • pp.253-258
    • /
    • 2023
  • In the environment, chromium often exists in a highly mobile and toxic form of Cr(VI). Therefore, the reduction of Cr(VI) to less toxic Cr(III) is considered an effective remediation strategy for Cr(VI)-contamination. In this study, the biological reduction of hexavalent chromium was examined at the concentrations of 0.01 mM, 0.1 mM, and 1 mM Cr(VI) by the dissimilatory metal-reducing bacterium, Shewanella sp. HN-41 in the presence of ferric-citrate. With the relatively condensed cell densities, the aqueous phase Cr(VI) was reduced at the proportions of 42%, 23%, and 31%, respectively for the 0.01 mM, 0.1 mM, and 1 mM Cr(VI) incubations, while Fe(III)-citrate was reduced at 95%, 88%, and 73%, respectively. Although the strain HN-41 was not considered to reduce Cr(VI) as the sole electron acceptor for anaerobic metabolism in the preliminary experiment, it has been presumed that outer-membrane c-type cytochromes such as MtrC and OmcA reduced Cr(VI) in the presence of ferric-citrate as the electron acceptor. Since this study indicated the potential of relatively high cell density for Cr(VI) reduction, it might propose a bioremediation strategy for Cr(VI) removal from contaminated waters using engineered systems such as bioreactors employing high cell growths.

생쥐 배양섬유 모세포주 L929에 미치는 중금속(Cd, Ni, Zn)류의 세포독성에 관한 연구 (A Study on the Cytotoxic Effect of Heavy metals (Cd, Ni, Zn) on Cultured Mouse Fibroblast L929 Cell line)

  • 이종빈;나명석;황영진;위성욱;최진희;김선희;유춘만;김재민
    • 한국환경보건학회지
    • /
    • 제23권2호
    • /
    • pp.98-105
    • /
    • 1997
  • The study on the cytotoxicity of heavy metals was carried out to evaluate the cytotoxic effect of those on mouse L929 fibroblast cell in 96-well microtiter plates. The cytotoxicity was assayed by the neutral red, tetrazolium MTT, total protein, micronuclei test. The cytotoxicity of the heavy metals by neutral red and tetrazolium MTT was showed in order, cadmium > zinc > nickel for the cationic metals tested. The effect of metal-metal interaction on the cytotoxicity showed a marked reduction of cadmium toxicity by zinc, to a lesser degree, by nickel. The amount of total protein in treated group added heavy metals was less than that of the control and treated cadmium alone was less than those of combination with nickel or zinc. At midpoint cytotoxicity values of heavy metals, the frequency of micronuclei on the cell treated heavy metals was more than that of control and treated cadmium alone was more than those of combination with nickel or zinc. From those results, it could be suggested that the heavy metals decreased the viability of mouse fibroblast L929 cells in a concentration-dependent manner and have cytogenic toxic effects, but mixed group decreased the cytotoxic and cytogenic toxicity on L929 cells.

  • PDF

잘피의 광합성에 대한 중금속 및 TBT의 독성 영향과 중금속 흡수에 대한 연구 (Preliminary Study on the Toxicity and Transfer of Heavy Metals and Tributyltin to Seagrass Zostera marina)

  • 최태섭;김광용;이병권;이정석
    • ALGAE
    • /
    • 제20권2호
    • /
    • pp.157-166
    • /
    • 2005
  • Uptake kinetics of Cd and Zn by leaves and rhizome of the seagrass Zostera marina were examined in controlled laboratory radiotracer experiments. Subsequently, acute toxicity of Cd, Cu and TBT on photosynthetic quantum yield (ΔF/Fm’ of Z. marina were determined, and the differential sensitivities of rapid light curve (RLC) to those harmful substances were also compared. All measurements on photosynthetic activity were determined by chlorophyll a fluorescence method using pulse amplitude modulation (PAM). Metal uptake by Z. marina was saturated with increasing exposure time in leaves and rhizomes. Uptake of Zn by Z. marina was faster than that of Cd. Metal uptake rates in Z. marina decreased with the increase of dissolved metal concentrations and also with the increase of biomass. The adverse effect of TBT on effective quantum yield was stronger than other pollutants. Average acute toxicity on the RLC of the seagrass exposed to TBT and two heavy metals (Cd and Cu) was going to decrease as follows: TBT > Cd > Cu. Our preliminary results in this study suggested that Z. marina potentially can be used as a biomonitor of harmful substances contamination in coastal waters.

Foliar Transfer of Dust and Heavy Metals on Roadside Plants in a Subtropical Environment

  • Gajbhiye, Triratnesh;Kim, Ki-Hyun;Pandey, Sudhir Kumar;Brown, Richard J.C.
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권3호
    • /
    • pp.137-145
    • /
    • 2016
  • In this study, the contents of dust and associated heavy metals on roadside plants were investigated to assess their foliar transfer. The study was conducted at six different locations (four roadside and two industrial) near an industrial area in Bilaspur (Chhattisgarh), India. Six metals (Fe, Mn, Pb, Cu, Cr, and Cd) were examined in this study. The concentrations of heavy metals in foliar dust were found to be in the order of Fe>Mn>Pb>Cu>Cr>Cd. However, this relative order changed in the case of leaf concentrations to Fe>Mn>Cd>Cu>Pb>Cr. The metal concentrations in the dust and leaves can be attributed mainly to industrial and vehicular emissions. In contrast to other metals, Cd showed significant accumulation in the leaves compared to the respective dust samples. This study showed different patterns in the distributions of heavy metals between the dust deposited on the leaves and the metal accumulated in the leaves. These results suggest that the dust retention and heavy metal accumulation in native plant species should be explored in an attempt to manage these hazardous metallic elements.

금속담지 활성알루미나 촉매의 암모니아 저온연소반응 (Catalytic Oxidation of Ammonia over Metal Supported on Alumina at Low Temperature)

  • 임윤희;이주열;박병현
    • 한국응용과학기술학회지
    • /
    • 제30권3호
    • /
    • pp.371-379
    • /
    • 2013
  • In order to improve the selective oxidation reaction of gaseous ammonia at a low temperature, various types of metal-impregnated activated alumina were prepared, and also physical and chemical properties of the conversion of ammonia were determined. Both types of metal (Cu, Ag) impregnated activated alumina show high conversion rate of ammonia at high temperature (over $300^{\circ}C$). However, at lower temperature ($200^{\circ}C$), Ag-impregnated catalyst shows the highest conversion rate (93%). In addition, the effects of lattice oxygen of the developed catalyst was studied. Ce-impregnated catalyst showed higher conversion rate than commercial alumina, but also showed lower conversion rate than Ag-impregnated sample. Moreover, 5 vol.% of Ag activation under hydrogen shows the highest conversion rate result. Finally, through high conversion at low temperature, it was considered that the production of NO and $NO_2$, toxic by-products, were effectively inhibited.