• Title/Summary/Keyword: toxic metal

Search Result 496, Processing Time 0.024 seconds

Treatment of ground waters in a hollow-fibre liquid membrane contactor for removal of ions

  • Hossain, Md. M.
    • Membrane and Water Treatment
    • /
    • v.4 no.2
    • /
    • pp.95-108
    • /
    • 2013
  • Metal ions exist in seawater, groundwater and industrial wastewaters. These source waters can be recycled if their concentrations are reduced. A number of processes can be applied for this purpose. Liquid-liquid extraction is one of the promising methods. In this paper, experimental results are presented on the removal of Cr(VI) using Aliquat-336, a reactive carrier, in sunflower oil (a non-toxic solvent). The performance of this new system is compared with those of kerosene (a toxic solvent). The extent of removal of Cr(VI) from samples with high and low concentrations are presented. The process was upgraded to a bench-scale module that can selectively remove about 50-90% Cr(VI) from samples of groundwater. Thus this process can produce water within the acceptable range for recycling and for use in secondary purposes such as irrigation.

Soil Washing and Effluent Treatment for Contaminated Soil with Toxic Metals (유해원소로 오염된 토양 세척 및 세척수의 처리)

  • Yang, Jung-Seok;Hwang, Jin-Min;Baek, Kitae;Kwon, Man Jae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.745-754
    • /
    • 2013
  • This study evaluated the optimal soil washing conditions for toxic metals considering the removal efficiency of toxic metals from contaminated soils as well as from soil washing effluents. In the contaminated soils, As was the major contaminant and extracted by sodium hydroxide solution better than by sulfuric acid. However, in the case of the treatment of soil washing effluents, sodium hydroxide was less effective extractant because soil organic matter extracted by sodium hydroxide prevented the solid-liquid phase separation and toxic metal removal. In the treatment of soil washing effluents with sulfuric acid, toxic metals in the effluents were mostly precipitated at the pH above 6.5. In addition, granular ferric oxide (GFO) as an adsorbent enhanced the removal of As and Pb indicating that toxic metals in the washing effluents can be removed almost completely by the use of combined adsorption-neutralization process. This study suggests that soil washing techniques for toxic metals should be optimized based on the physical and chemical properties of the contaminated soils, the nature of chemical extractant, and the removal efficiency and effectiveness of toxic metals from the soils as well as soil washing effluents.

Acute Toxicity of Heavy Metal (Cd, Cu, Zn) on the Hatching Rates of Fertilized Eggs in the Olive Flounder (Paralichthys olivaceus) (넙치(Paralichthys olivaceus) 수정란 부화율에 대한 중금속(Cd, Cu, Zn)의 급성독성)

  • Hwang, Un-Ki;Ryu, Hyang-Mi;Kim, Seong-Gil;Park, Seung-Yoon;Kang, Han Seung
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.136-142
    • /
    • 2012
  • Acute toxicity test of heavy metal (Cd, Cu, Zn) were examined using the hatching rates of fertilized eggs in the oliver flounder, Paralichthys olivaceus. Eggs were exposed to Cd, Cu, Zn (0, 10, 100, 500, 1000, 2500, 5000 ppb) and then normal hatching rates were investigated after 48 h. The normal hatching rates in the control condition (not including Cd, Cu and Zn) were greater than 80%, but suddenly decreased with increasing of heavy metal concentrations. Cd, Cu and Zn reduced the normal hatching rates in concentration-dependent way and a significant reduction occurred at concentration grater than 1000, 100, 100 ppb, respectively. The ranking of heavy metal toxicity was Zn>Cu>Cd, with $EC_{50}$ values of 584, 1015 and 1282 ppb, respectively. The no-observed-effect-concentration (NOEC) and the lowest-observed-effect-concentration (LOEC) showed each 100 and 500 ppb of normal hatching rates in exposed to Cu and Zn. The NOEC and LOEC of normal hatching rates in Cd were 500 ppb and 1000 ppb, respectively. From these results, the normal hatching rates of P. olivaceus have toxic effect at greater than the 100 ppb concentrations in Cu, Zn and the 500 ppb concentrations in Cd in natural ecosystems. These results suggest that biological assay using the normal hatching rates of P. olivaceus are very useful test method for the acute toxicity assessment of a toxic substance as heavy metal in marine ecosystems.

Improved adsorption performance of heavy metals by surface modification of polypropylene/polyethylene media through oxygen plasma and acrylic acid

  • Hong, Jeongmin;Lee, Seungwoo;Ko, Dongah;Gwon, Eunmi;Hwang, Yuhoon
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.231-235
    • /
    • 2020
  • Industrialization and modern developments have led to an influx of toxic heavy metals into the aquatic environment, and the accumulation of heavy metals has serious adverse effects on humans. Among the various heavy metal treatment methods, adsorption is very useful and frequently used. Plastic materials, such as polypropylene and polyethylene, have been widely used as filter media due to their mechanical and chemical stability. However, the surface of plastic material is inert and therefore the adsorption capability of heavy metals is very limited. In this study, granular media and fiber media composed of polypropylene and polyethylene are used, and the surface modification was conducted in order to increase adsorption capability toward heavy metals. Oxygen plasma generated hydroxyl groups on the surface of the media to activate the surface, and then acrylic acid was synthesized on the surface. The grafted carboxyl group was confirmed by FT-IR and SEM. Heavy metal adsorption capability of pristine and surface modified adsorbents was also evaluated. Overall, heavy metal adsorption capability was increased by surface modification due to electrostatic interaction between the carboxyl groups and heavy metal ions. Fibrous PP/PE showed lower improvement compared to granular PP media because pore blockage occurred by the surface modification step, thereby inhibiting mass transfer.

Chemical forms of Heavy Metal Elements in Mine Wastes, Stream Sediments and Surrounding Soils from the Gubong Mine, Korea (구봉광산 일대 광미, 하상퇴적물 및 주변 토양에서의 중금속 원소의 존재 형태)

  • 김종옥
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.261-271
    • /
    • 1999
  • Mining activity in the Gubong gold mine started in 1908 and lasted up to recent days. Heavy metals derived from the activity may be porentially toxic to human life and envirinment of this area. Because metal toxicity depends on chemical associations into five operationally defined groups: exchangeable, carbonate, reducible, oxidizable, and residual fractions, and the Most of heavy metals have significant little significance (alomost<1%). And Cu is mainly associated with the oxidizable from. Total concentration of heavy metals, pH, and mineralogy affect the chemical forms of the metals. Heavy metal concentrations. Significant amounts of metal elements (5∼65.1% in Pb, 6.2∼39.7% in Zn, 8.7∼54.7% in Cd, and 3.6∼24.7% in Cu) were present in carbonate form from mine wastes, contaminated soils and sediments. High pH value and cerussite (Pb bearing carbonate mineral) in mine wastes, contaminated soils and sediments. High pH value and cerussite (Pb beraring varbonate mineral) in mine waste support this result. Areas with high corbonate bound from would have higher potentoal conamination, however, because elements of carbonate bound forms are easily mobilized under lower pH conditions in the surface envionments due to acid to rain soil acidification.

  • PDF

Ethylenediamine as a Promising and Biodegradable Chelating Agent in Growth of Plant Under Zinc Stress (아연 스트레스를 받는 식물의 성장을 위한 생분해되는 킬레이트로서 에틸렌디아민)

  • Lee, Sang-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.115-119
    • /
    • 2010
  • Zinc (Zn) is an essential element required for growth and development of plants. However, Zn can be toxic to plants when it presents excessive amount. Phytoextraction is an economic and environment-friendly technique using plants to clean-up metal-contaminated soils. However, the technique cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. Therefore, this research focuses on identifying chelating agents which are biodegradable and applicable to highly metalcontaminated areas. Zn as a target metal and cysteine (Cys), histidine (His), malate, citrate oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Plants were grown on agar media containing various chelating agents with Zn to analyze the effect on plant growth. Malate and His slightly increased the inhibitory effect of Zn on root growth of plants, whereas Cys, citrate, oxalate, and succinate did not show significant effects. However, EDA strongly diminished the inhibitory effect of Zn on root growth. The effect of EDA is correlated with decreased Zn uptake into the plants. In conclusion, as biodegradable chelating agents, EDA is a good candidate for growth of plants in highly Zn-contaminated areas.

Bioadsorbents for remediation of heavy metals: Current status and their future prospects

  • Gupta, Vinod Kumar;Nayak, Arunima;Agarwal, Shilpi
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The biosorption process has been established as characteristics of dead biomasses of both cellulosic and microbial origin to bind metal ion pollutants from aqueous suspension. The high effectiveness of this process even at low metal concentration, similarity to ion exchange treatment process, but cheaper and greener alternative to conventional techniques have resulted in a mature biosorption technology. Yet its adoption to large scale industrial wastewaters treatment has still been a distant reality. The purpose of this review is to make in-depth analyses of the various aspects of the biosorption technology, staring from the various biosorbents used till date and the various factors affecting the process. The design of better biosorbents for improving their physico-chemical features as well as enhancing their biosorption characteristics has been discussed. Better economic value of the biosorption technology is related to the repeated reuse of the biosorbent with minimum loss of efficiency. In this context desorption of the metal pollutants as well as regeneration of the biosorbent has been discussed in detail. Various inhibitions including the multi mechanistic role of the biosorption technology has been identified which have played a contributory role to its non-commercialization.

Effect of Two-step Surface Modification of Activated Carbon on the Adsorption Characteristics of Metal Ions in Wastewater I. Equilibrium and Batch Adsorptions

  • Park, Geun-Il;Lee, Jae-Kwang;Ryu, Seung-Kon;Kim, Joon-Hyung
    • Carbon letters
    • /
    • v.3 no.4
    • /
    • pp.219-225
    • /
    • 2002
  • The two-step surface modifications of activated carbon was carried out to improve the adsorption capacity of toxic heavy metal ions in liquid phase. Physical and chemical properties of the as-received activated carbon (AC) and two kinds of surface-modified activated carbons ($1^{st}AC$ and $2^{nd}AC$) were evaluated through the BET analysis, surface acidity, and oxides measurements. Specific surface area and pore volume did not significantly change, but surface oxide-group remarkably increased by the surface modification. Equilibrium and batch adsorptions of the various metals, such as Pb, Cd, and Cr, using AC, $1^{st}AC$, and $2^{nd}AC$ were performed at initial pH 5. The adsorption capacity and rate of $2^{nd}AC$ were higher than those of AC and $1^{st}AC$. The carboxylic/sodium carboxylate complex groups were developed from the two-step surface modification of activated carbon, which strongly affected the adsorption of metal ions.

  • PDF

Role of Proline Accumulation in Response to Toxic Copper in Microcystis aeruginosa

  • Park, So-Hyun;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.189-196
    • /
    • 2001
  • The blue green alga, Microcystis aeruginosa, was found to accumulate proline under the stressful concentration of cupric ions. The changes of proline level in Microcystis aeruginosa in response to copper(Cu) have been monitored and the function of the accumulated proline was studied with respect to its effect on Cu uptake. Exposure of Microcystis aeruginosa elevated concentrations of Cu led to accumulation of fee proline depending on the concentrations of the metal in the external medium. The greater the toxicity or accumulation of the metal, the higher the amount of proline in algal cells were found. When proline was exogenously supplied prior to Cu treatment, the absorption of Cu was markedly reduced. When exogenous proline was supplied after Cu treatment, it resulted in a remarkable desorption of the adsorbed Cu immediately after the addition of proline. Pretreatment of Microcystis aeruginosa with proline counteracted with metal-induced lipid peroxidation. The results of the present study showed a protective elect of proline on metal toxicity through inhibition of lipid peroxidation and suggested that the accumulation of proline may be related to the tolerance mechanism for dealing with Cu stress.

  • PDF

Microstructures and Mechanical Properties of Beryllium(Be)-free Ni-Cr-Mo based Alloys for Metal-Ceramic Crown (베릴륨(Be)이 미 첨가된 치과도재소부용 Ni-Cr-Mo계 합금의 미세조직 및 기계적 성질 특성)

  • Song, Kyung-Woo;Go, Eun-Kyoung;Lee, Jung-Hwan;Jung, Jong-Hyun;Noh, Hak;Han, Jae-Ick
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.321-329
    • /
    • 2006
  • The popularity of Ni-Cr-Mo based metal alloys for metal-ceramic crown have increased recently because of low price, superior yield strength and rigidity. the use of these alloys give them the potential advantage of thinner copping with the required rigidity for long span bridges. The purpose of this study was to assess the microstructures and mechanical properties of Ni-Cr-Mo-(Si,Al,Nb,Zr,Ti.Cu,Mm) based Alloys not containing beryllium(Be) related toxic effects. The abtained results indicated that as-cast these specimen alloys showed compositional and microstructural differences, and mechanical properties values of Ni69Cr20Mo5Si2Al4 alloy among these specimen alloys was found to be superior to those of commercial Ni-Cr based alloy using in market place today.

  • PDF