• Title/Summary/Keyword: toxic heavy metal

Search Result 273, Processing Time 0.34 seconds

Removal of Pb(II) from wastewater by biosorption using powdered waste sludge

  • Jang, Hana;Park, Nohback;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • Lead is a highly toxic heavy metal that causes serious health problems. Nonetheless, it is increasingly being used for industrial applications and is often discharged into the environment without adequate purification. In this study, Pb(II) was removed by powdered waste sludge (PWS) based on the biosorption mechanism. Different PWSs were collected from a submerged moving media intermittent aeration reactor (SMMIAR) and modified Ludzack-Ettinger (MLE) processes. The contents of extracellular polymeric substances were similar, but the surface area of MLE-PWS (2.07 ㎡/g) was higher than that of SMMIAR-PWS (0.82 ㎡/g); this is expected to be the main parameter determining Pb(II) biosorption capacity. The Bacillaceae family was dominant in both PWSs and may serve as the major responsible bacterial group for Pb(II) biosorption. Pb(II) biosorption using PWS was evaluated for reaction time, salinity effect, and isotherm equilibrium. For all experiments, MLE-PWS showed higher removal efficiency. At a fixed initial Pb(II) concentration of 20 mg/L and a reaction time of 180 minutes, the biosorption capacities (qe) for SMMIAR- and MLE-PWSs were 2.86 and 3.07 mg/g, respectively. Pb(II) biosorption using PWS was rapid; over 80% of the maximum biosorption capacity was achieved within 10 minutes. Interestingly, MLE-PWS showed enhanced Pb(II) biosorption with salinity values of up to 30 g NaCl/L. Linear regression of the Freundlich isotherm revealed high regression coefficients (R2 > 0.968). The fundamental Pb(II) biosorption capacity, represented by the KF value, was consistently higher for MLE-PWS than SMMIAR-PWS.

Contamination and Risk Assessment of Lead and Cadmium in Commonly Consumed Fishes as Affected by Habitat (서식지에 따른 다소비 어류의 납과 카드뮴의 오염 및 위해 평가)

  • Kim, Ki Hyun;Kim, Yong Jung;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.541-555
    • /
    • 2016
  • This study determined the concentrations of lead and cadmium in 18 species of commonly consumed fish and assessed the risk based on provisional tolerable weekly (monthly) intakes [PTW(M)I] % as affected by behavioral characteristics, such as migration and settlement. In the 18 species, the mean concentrations of lead and cadmium were higher in the 11 species of migratory fish (llargehead hairtail Trichiurus lepturus, chub mackerel Scomber japonicus, Pacific saury Cololabis saira, skipjack tuna Katsuwonus pelamis, Pacific cod Gadus macrocephalus, anchovy Engraulis japonicus, Alaska pollack Theragra chalcogramm, brown croaker Miichthys miiuy, Japanese Spanish mackerel Scomberomorus niphonius, yellow croaker Larimichthys polyactis, and Pacific herring Clupea pallasii) than in the seven demersal species (red stingray Dasyatis akajei, brown sole Pleuronectes herzensteini, bastard halibut Paralichthys olivaceus, conger eel Conger myriaster, blackmouth angler Lophiomus setigerus, rockfish Sebastes schlegelii, and filefish Stephanolepis cirrhifer). Based on the mean concentrations, the PTWI % of lead and cadmium in commonly consumed migratory fish were 1.900 and 2.986%, respectively, which were higher than the values for lead and cadmium in the commonly consumed demersal fishes (0.257 and 0.318%, respectively). The estimation of weekly (monthly) intakes and target hazard quotients for the toxic elements lead and cadmium revealed that the commonly consumed migratory and demersal fish do not pose any health risks for consumers.

Neurotoxicity Assessment of Methamphetamine and Cadmium Using Cultured Neuronal Cells of Long-Evans Rats (신경세포 배양법을 이용한 methamphetamine과 cadmium의 신경독성 평가)

  • Cho, Dae-Hyun;Kim, Jun-Gyon;Jeong, Yong;Lee, Bong-Hun;Kim, Eun-Youb;Kim, Jeong-Goo;Cho, Tai-Soon;Kim, Jin-Suk;Moon, Hwa-Hwey
    • Toxicological Research
    • /
    • v.12 no.1
    • /
    • pp.69-79
    • /
    • 1996
  • Primary culture of cerebellar neuronal cells derived from 8-day old Long-Evans rats was used. Pure granule cells, astrocytes or mixed cells culture systems were prepared. These cells were differentiated and developed synaptic connections. And the astrocytes were identified by immunostaining with glial fibrillary acidic protein (GFAP). Methamphetamine (MAP), which acts on dopaminergic system and cadmium (Cd), a toxic heavy metal, were applied and biochemical assays and electrophysiological studies were performed. $LC_50$ values estimated by MTT assay of MAP and Cd were 3 mM and 2$\mu M$ respectively. Cells were treated with 1 mM or 2 mM MAP and 1$\mu M$ $CdCl_2$ for 48 hour, and the incubation media were analyzed for the content of released LDH. MAP (2 mM) and Cd significantly increased the LDH release. Cell viability was decreased in both groups and some cytopathological changes like cell swelling or vacuolization were seen. The cerebellar granule cells were used for measuring membrane currents using whole-cell clamp technique. Sodium and potassium currents were not affected by MAP neither Cd, but calcium current was significantly reduced by Cd but not affected by MAP. Therefore, in vitro neurotoxicity test system using neuronaI cells and astrocytes cultures were established and can be used in screening of potential neurotoxic chemicals.

  • PDF

Comparative and Interactive Biochemical Effects of Sub-Lethal Concentrations of Cadmium and Lead on Some Tissues of the African Catfish (Clarias gariepinus)

  • Elarabany, Naglaa;Bahnasawy, Mohammed
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.249-255
    • /
    • 2019
  • Cadmium is a strong toxic heavy metal which presents in paints and liquid wastes and causes oxidative stress in fish. On the other hand, lead is widely used for different purposes, e.g. lead pipes, it targets vital organs such as liver and kidney causing biochemical alterations. The present study evaluates the effects of 60 days exposure to Cd and Pb either single or combined together in African catfish. Sixty-four fishes were divided into 3 groups and exposed to $CdCl_2$ (7.02 mg/L) or $PbCl_2$ (69.3 mg/L) or a combination of them along with control group. Activities of acid phosphatase (ACP), lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) were estimated. Moreover, gill, liver and kidney were assayed for activities of superoxide dismutase (SOD), catalase (CAT) and levels of glutathione (GSH) and malondialdehyde (MDA). Individual exposure showed that both Cd and Pb significantly decreased LDH activity and SOD activity in the kidney. Pb significantly increased G-6-PDH activity and decreased GSH level in the gill. CAT activity in liver and kidney elevated significantly on Cd exposure while lead caused a significant depletion in the liver and significant elevation in the kidney. Both Cd and Pb significantly increased MDA levels in liver and kidney while Pb increased its level in gills. The combined exposure resulted in normalization of LDH, G-6-PDH activity, and CAT activity in liver and kidney as well as GSH level in both tissues and MDA in gill and kidney. The combination increased SOD activity and MDA level in liver and decreased SOD activity in kidney and GSH level in gills. In conclusion, the antioxidant system of African catfish was adversely affected by prolonged exposure to Cd and Pb. The combined exposure caused less damage than individual exposure and returned most parameters to those of controls.

Mapping Quantitative Trait Loci Associated with Arsenic Toxicity Stress in a Double Haploid Population of Rice (Oryza sativa L.)

  • Saleem Asif;Rahmatullah Jan;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.282-282
    • /
    • 2022
  • Arsenic (As) is a toxic heavy metal that affects the major rice-growing regions of the world and can cause cancer in humans. Rice paddy fields in South Asia are mostly dependent on arsenic-contaminated water sources due to which rice takes up the arsenic from the soil through roots and accumulates it in plant different parts. Here, we present a quantitative trait locus (QTL) mapping study to find out candidate genes conferring As toxicity tolerance in rice (Oryza sativa L.) at the seedling stage. Three weeks old, 120 double haploid CNDH lines derived from a cross between the Indica variety Cheongcheong and the Japonica variety Nagdong and their parental lines were used by treating with 25 μM As. After 2 weeks ofAs stress, 5 traits such as; shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), and chlorophyll contents (CHC) were measured. A linkage map of 12 rice chromosomes was constructed from genotypic data DH lines using 778 SSR markers. The linkage map covered a total genetic distance of 2121.7 cM of the rice genome with an average interval of 10.6 cM between markers. A total of seventeen QTLs (LOD>2) were mapped on chromosomes 1, 2, 3, 6, 7, 8, 9, 11, and 12 using composite interval mapping with trait-increasing alleles coming from both parents. Five QTLs for SL, Two QTLs for RL, Five QTLs for SHL, Three QTLs for RFW, and Two QTLs for CHC were detected. The QTLs related to CHC were selected for forther study.

  • PDF

Protective Effect of Celastrus orbiculatus Thunb Extract on Cultured Neuroglial Cells Damaged by Manganese Dioxide, a Parkinsonism Inducer (파킨슨유발제인 이산화망간으로 손상된 배양 대뇌 신경아교세포에 대한 노박덩굴 추출물의 보호)

  • Seo, Young-Mi
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.2
    • /
    • pp.150-157
    • /
    • 2020
  • The protective effects of a Celastrus orbiculatus Thunb (CO) extract against manganese dioxide (MnO2)-induced cytotoxicity in cultured C6 glioma cells were examined. This study assessed the antioxidative effects, including the suppressive ability of lipid peroxidation (LP), the inhibitory ability of xanthine oxidase (XO), and the cell viability. MnO2 decreased the cell viability remarkably in a dose-dependent manner. The XTT50 value was determined to be 146.7 μM in these cultures. The cytotoxicity of MnO2 was calculated to be mid-toxic using Borenfreund and Puerner's toxic criteria. Kaempferol (KAE) increased the cell viability damaged by MnO2-induced cytotoxicity significantly. Regarding the protective effects of the CO extract on MnO2-induced cytotoxicity, the CO extract increased cell viability significantly compared to the MnO2-treated group. The CO extract also had inhibitory abilities against lipid peroxidation (LP) and xanthine oxidase (XO). From these findings, oxidative stress is involved in the cytotoxicity of MnO2. The CO extract effectively blocked the cytotoxicity induced by MnO2 via its antioxidative effects. Conclusively, natural resources, such as the CO extract, might be a useful agent for the diminution or improvement of the heavy metal cytotoxicity correlated with disease through oxidative stress, such as MnO2, a Parkinsonism inducer.

Structure and chemical durability of borosilicate glass-ceramics containing EAF dust (EAF dust가 포함된 붕규산염계 결정화 유리의 구조 및 화학적 내구성)

  • Ahn, Y.S.;Kang, S.G.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.2
    • /
    • pp.82-89
    • /
    • 2007
  • Glass-ceramics were fabricated by heat-treating a glass at $700^{\circ}C$/10hr which was obtained by melting a glass frit mixed with $40{\sim}80 wt%$ EAF dust at $1300^{\circ}C$/1hr. Dependence of crystal phase and bonding state change upon a compositional change and heat treatment condition were studied and the results was connected to the toxic characterization leaching procedure (TCLP) test data to investigate a chemical durability of the specimens. Increasing dust in a glass shifted the peak around $1000cm^{-1}$ to the lower frequency which was composed of two vibration peaks for the nonbridging oxygen at $960cm^{-1}$ and the bridging oxygen at $1050{\sim}1060cm^{-1}$. Also, the $B_2O_3$ structure of boroxol ring changed to a tetrhedral-, trigonal- and di-borate with dust addition. The Fe-O peaks in the glass-ceramics were observed which is consitent with XRD results of spinel formation. The surface of glass after TCLP test was severely cracked while there was no cracks on a glass-ceramics after TCLP test so the chemical durability of the glass-ceramics is superior than that of glass. The leaching concentration of Fe for the glass-ceramics containing EAF dust 80 wt% is 1/15 times lower than that of glass. The Zn leaching concentration fur the glass-ceramics containing dust < 70 wt% was higher than that of glass but its trend was reversed for the specimen of dust content > 80 wt% which could be concluded as correlated with occurrence of willemite phase.

Study on the Mineral and Heavy Metal Contents in the Hair of Preschool Aged Autistic Children (자폐아동 모발에서의 미네랄 및 중금속 함량에 관한 연구)

  • Jung, Myung-Ae;Jang, Hyun-Seo;Park, Eun-Ju;Lee, Han-Woo;Choi, Jeong-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.11
    • /
    • pp.1422-1426
    • /
    • 2008
  • The purpose of this study was to test characteristics between normal and autistic children via comparison of nutrient intakes, hair mineral, blood free radical, and serotonin contents. A total of 50 children aged 3-9 were divided into two main groups of normal control children (n=22) and autistic children (n=28) tested by child psychiatrist. The nutrient intakes by 24-hour recall method were no significantly different between the two groups. The concentrations of toxic mineral, such as cadmium (Cd) and lead (Pb) in hair of autistic children were significantly higher, while concentration of antioxidant mineral (Cu, Zn, Fe) was lower than that of normal children. The autistic children had significantly higher concentrations of blood free radical than that of normal children. No significant difference was observed in serotonin concentration between the two groups. Our results suggest a possible role of increased toxic mineral and free radical, both of which may be relevant to the pathophysiology of autism in children with developmental delay.

Hair Mineral Analysis of People Suffering from Hair Loss According to Their Age and Gender (연령 및 성별에 따른 탈모 모발의 미네랄 함량 분석)

  • So, Young-Jin;Lee, Myung-Ho
    • Culinary science and hospitality research
    • /
    • v.19 no.5
    • /
    • pp.100-109
    • /
    • 2013
  • This study aims to analyze 19 kinds of mineral contents in hair targeting 311 people in Seoul who suffer from hair loss. The results are as follows: 1. The average contents of all kinds of minerals were within the standards. 2. Sodium, potassium, and selenium were more detected in men than in women; calcium, magnesium, copper, and manganese were more detected in women than in men; toxic elements, mercury, antimony, and arsenic were more detected in men than in women, which was statistically significant. 3. As the age increased, potassium (p<.05), iron (p<.01), manganese (p<.05), chromium (p<.01), and mercury (P<0.01) increased gradually, which was statistically significant. In particular, the content of mercury exceeded its standard in those over fifty. 4. Selenium (p<.01), lead (p<.05), aluminum (p<.05), and arsenic (p<.01) were more detected in natural hair than in permanent or colored hair. Calcium (p<.001), magnesium (p<.001), and manganese (p<.01) were more detected in permanent or colored hair than in natural hair. They were all statistically significant.

  • PDF

Transfer Factor of Heavy Metals from Agricultural Soil to Agricultural Products (농작물 재배지 토양 내 비소, 납 및 카드뮴의 농산물로의 전이계수 산출)

  • Kim, Ji-Young;Lee, Ji-Ho;Kunhikrishnan, Anitha;Kang, Dae-Won;Kim, Min-Ji;Yoo, Ji-Hyock;Kim, Doo Ho;Lee, Young-Ja;Kim, Won Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.300-307
    • /
    • 2012
  • BACKGROUND: The Transfer Factor (TF) of heavy metals from soil to plant is important, because TF is an indicator of heavy metal in soils and a factor that quantifies bioavailability of heavy metals to agricultural products. This study was conducted to investigate the transfer ability of Arsenic (As), Cadmium (Cd), and Lead (Pb) from soil to agricultural products. METHODS AND RESULTS: We investigated heavy metals (As, Cd and Pb) concentrations in 9 agricultural products (rice, barely, corn, pulse, lettuce, pumpkin, apple, pear, tangerin) and soil. TF of agricultural products was evaluated based on total and HCl-extractable soil concentration of As, Cd, and Pb. Regression analysis was used to predict the relationship of total and HCl-extractable concentration with agricultural product contents of As, Cd, and Pb. The result showed that TF was investigated average 0.006~0.309 (As), 0.002~6.185 (Cd), 0.003~0.602 (Pb). The mean TF value was the highest as rice 0.309 in As, lettuce 6.185, pear 0.717, rice 0.308 in Cd, lettuce 0.602, pumpkin 0.536 in Pb which were dependent on the vegetable species and cereal is showed higher than fruit-vegetables in As. CONCLUSION(S): Soil HCl-extractable concentration of As, Cd, and Pb had the larger effects on thier contents in agricultural products than total soil concentrations. We suggests that TF are served as influential factor on the prediction of uptake. Further study for uptake and accumulation mechanism of toxic metals by agricultural products will be required to assess the human health risk and need TF of more agricultural products.