• Title/Summary/Keyword: towline

Search Result 13, Processing Time 0.119 seconds

Coupled Dynamic Simulation of a Tug-Towline-Towed Barge based on the Multiple Element Model of Towline

  • Yoon, Hyeon Kyu;Kim, Yeon Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.707-714
    • /
    • 2012
  • Recently, tug boats are widely used for towing a barge which transports building materials, a large block of a ship, offshore crane, and so on. In order to simulate the dynamics of the coupled towing system correctly, the dynamics of the towline should be well modeled. In this paper, the towline was modeled as the multiple finite elements, and each element was assumed as a rigid cylinder which moves in five degrees of freedom except roll. The external tension and its moment acting on each element of the towline were modeled depending on the position vector's direction. Tugboat's motion was simulated in six degrees of freedom where wave and current effects were included, and towed barge was assumed to move in the horizontal plane only. In order to confirm the mathematical models of the coupled towing systems, standard maneuvering trials such as course changing maneuver, turning circle test and zig-zag test were simulated. In addition, the same trials were simulated when the external disturbances like wave and current exist. As the result, it is supposed that the results might be qualitatively reasonable.

A Study on the Calculation of Resistance of the Ship to be Towed and Towline Tension (선박의 예인저항 및 예인삭의 장력 계산에 관한 연구)

  • Nam, Taek-Kun;Jung, Chang-Hyun;Jeong, Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.607-612
    • /
    • 2012
  • In this paper, calculation methods of resistance of the ship to be towed and towline tension are discussed. When the vessel is fallen into dead ship condition then appropriate towing force have to be estimated to move the vessel from accident place to safe area. In this research, resistance of the ship to be towed and the tow hawser were considered to estimate total towline tension. Polynomial interpolation method is also applied to estimate additional hydrodynamic resistance of towline. Finally, UI program to calculate the resistance and total towline tension is developed. The developed program based on the research results is effective and convenient to use.

The Effects of Skegs and Length of Towline on Trajectory Characteristics of Barge (스케그의 유무와 예인삭의 길이가 부선의 궤적 특성에 미치는 영향)

  • Lee, Sang-min;Luong, Tu-Nam;Im, Nam-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.385-392
    • /
    • 2017
  • This research presents the results of a study on the trajectory characteristics of barges with different configurations. A towing experiment was carried out in a water tank with three types of barges in two cases: with and without skegs. The effects of towline length on trajectory were also observed. This study analyzed and compared the length and amplitude of trajectory shapes for each barge in various combinations. It revealed that the trajectory of a barge is influenced not only by skegs but also by the length of the towline. As a result of this work, it can be clearly seen that skegs significantly improve the course stability of a towed barge regardless of differences in bow shape or towline length. Water tank test results also indicated that the length of a towline plays a key role in affecting the trajectory characteristics of a barge-towing system. The length and amplitude of the slewing motion of a barge increased with an increase in the length of the towline connected to the barge. Validation of the present research results should be carried out by further experiments and computational comparisons in the near future.

The Effect of Towline and Bridle on the Slewing Motion of Barge (예인삭 및 브라이들이 부선의 회두운동에 미치는 영향)

  • Yu, Chol;Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.483-488
    • /
    • 2011
  • When a tug-barge navigates in the water, maneuvering ability of a tug is affected by the slewing motion of barge. Therefore it is necessary to decrease the slewing motion of a barge for safe towing work. We chose two different types of barge model and investigated their motion depending on the existence of bridle, towing speed and length of towline. The experiments are performed in the still water using the wire rope for the towline. A longer towline makes the heading angle smaller. The towing speed does not largely affect the turning of barge. Finally, it is noted that the bridle of a towing line decrease the slewing motion of barge more effectively.

Experimental Study on the Towing Stability of Barges Based on Bow Shape (선수형상이 다른 부선의 예인안정성에 관한 실험 연구)

  • Lee, Sang;Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.800-806
    • /
    • 2016
  • The maneuverability of a tugboat is affected by the slewing motion of a barge while the tug is navigating with the barge in water. Therefore, it is necessary to reduce the slewing motion of the barge to allow for safe towing work. In this study, a water tank experiment was performed to examine the factors affecting the slewing motion of a barge and improve course stability. The characteristics of slewing motion vary according to bow shape. Three barge models, each with a different bow shape, were selected as experimental subjects. A comprehensive analysis was performed to study the effects of various factors on the slewing motion of a barge such as the presence of a skeg and bridle, towing speed, and the length of the towline. The effect of the location of the skeg varied according to bow-hull form. The slewing motion of the barge decreased as the length of the towline increased, and this decrease was even greater when a bridle was connected to the towline. In addition, the slewing motion decreased significantly as the length of the bridle increased. The slewing angles did not show significant change with respect to towing speed.

Experimental and Numerical Study on Towing Stability of Transportation Barge (운송 바지선의 예인안정성에 관한 모형시험 및 수치해석 연구)

  • Nam, Bo Woo;Hong, Sa Young;Kim, Jin Ha;Choi, Sung Kwon;Kim, Jong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.102-110
    • /
    • 2014
  • This paper presents the results of an experimental and numerical study on the towing characteristics of a barge. A series of model tests were carried out at the Ocean Engineering Basin of KRISO. A model with a 1:50 scale ratio was constructed out of wood. First, force coefficient tests were performed in order to obtain the surge, sway, and yaw force coefficients of the barge. The focus was the effect of skeg on the force coefficients. The stability parameter was calculated from the force coefficients. Next, towing tests in calm sea were carried out with different towline lengths and towing speeds. The trajectories of the barge and the towline tensions were measured during the tests. The measured trajectories were compared with numerical simulation results using a cross-flow model. The towing stability of the barge in a calm sea is discussed in detail.

Numerical Simulation of Towing Stability of Barges in Calm Water (정수 중 바지선의 예인안정성에 관한 수치 시뮬레이션)

  • Nam, Bo Woo;Park, Ji Young;Hong, Sa Young;Sung, Hong Gun;Kim, Jong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 2013
  • This paper presents the results of a numerical study on the towing stability of barges. Towing simulations were carried out by using two different numerical models (MMG model and cross-flow model). Stability criteria are also suggested based on the analysis of the linearized governing equations for towed vessel motion. In order to validate the present numerical models, the experimental data of Yasukawa et al. (2006) were used. Simulations were conducted for single and double barges under constant towing speed and direction conditions. The time histories of the heading angle, yaw rate, and towline tension were compared between the numerical results and experiments. The effects of the towline length on the slewing frequency and maximum heading angle were also observed. In addition, a series of numerical simulations using variable hydrodynamic coefficients were performed to investigate the effects of the hydrodynamic forces on the towing stability.

A Study on the Calculation of Towing Force for the Disabled Ship and Its Experiments (사고 선박의 예인력 계산 및 실험에 관한 연구)

  • Nam, Taek-Kun;Jung, Chang-Hyun;Kim, Jin-Man;Choi, Hyuek-Jin
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.463-470
    • /
    • 2014
  • In this paper, calculation of towing force required to tow the ship and experiments to verify its appropriacy are discussed. Friction, wind and wave-making resistance of vessel are considered to calculate towing force of specified vessel. Propeller resistance is also reflected and it is assumed that the propellers are locked. Node analysis to estimate additional resistance on towline is applied. Total towing force could be obtained by adding the ship's resistance and towline resistance. Experiments with training ship SAE YU DAL was executed to check the effectiveness of calculation methods and some comparison between experiments and calculation results was also done. From the comparative analysis, we confirmed that towing speed is primary terms in the calculation of towing force and propeller resistance is a major elements of ship's resistance with the increasing of towing speed. We can see that additional resistance induced by yawing of ship during towing have to be considered for total tow resistance.

Development of a Model Test System and Analysis Method for Assessing Towing Stability of a Caisson in Wet Towing (케이슨의 예인 안정성 평가를 위한 모형 시험 시스템과 해석 기법의 개발)

  • Kim, Jong-Hyeok;Seo, Jeonghwa;Kim, Han-Gyeol;Kim, Changhee;Yoo, Geuksang;Rhee, Shin Hyung;Park, Chang-wook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.259-265
    • /
    • 2016
  • The present study aims to design and utilize a model test system of a Caisson in wet towing condition, to assess towing stability of a 9,300 ton class caisson. The suggested towing system was designed to provide regular tension on the towline, whereas the previous model test system towed the model in constant speed. The new model test system was expected to reproduce the towing condition more realistically than the test system with constant speed condition, as the tugboat in actual towing condition tows the towline with constant power. Model tests were conducted in a towing tank with 1/30 scaled model. In the model tests, six-degrees-of-freedom motion of the caisson model and tension on the towline were measured and analyzed. By using the new system, fluctuation of the motion of model and tension on the towline decreased. The variation in the draft and initial trim was applied in the model tests. In the initial trim condition, the motion and towing force decreased.

A Study on Towing Characteristics of Barge Considering Wind Force (풍하중에 의한 바지선의 예인 시 거동특성 변화에 관한 연구)

  • Nam, Bo Woo;Choi, Young-Myoung;Hong, Sa Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.283-290
    • /
    • 2015
  • This paper presents the results of a numerical study on the towing characteristics of a barge under various wind conditions. First, stability criteria, including the wind force, were derived based on the linear motion equations of a towed vessel. The effect of the wind force on the towing stability was investigated using stability criteria. Next, towing simulations were carried out using a nonlinear time-domain simulation method. In this case, the towline was modeled as a simple spring-damper, and the wind force was computed using the wind coefficient from CFD calculations. Simulations were conducted for a barge under a constant towing speed and constant wind speed conditions. The effect of the wind direction on the slewing motion was also observed. In addition, a series of numerical simulations using variable wind speeds were performed for the present barge with and without a skeg.