• 제목/요약/키워드: tower system

Search Result 847, Processing Time 0.033 seconds

Development of a methodology for damping of tall buildings motion using TLCD devices

  • Diana, Giorgio;Resta, Ferruccio;Sabato, Diego;Tomasini, Gisella
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.629-646
    • /
    • 2013
  • One of the most common solutions adopted to reduce vibrations of skyscrapers due to wind or earthquake action is to add external damping devices to these structures, such as a TMD (Tuned Mass Damper) or TLCD (Tuned Liquid Column Damper). It is well known that a TLCD device introduces on the structure a nonlinear damping force whose effect decreases when the amplitude of its motion increases. The main objective of this paper is to describe a Hardware-in-the-Loop test able to validate the effectiveness of the TLCD by simulating the real behavior of a tower subjected to the combined action of wind and a TLCD, considering also the nonlinear effects associated with the damping device behavior. Within this test procedure a scaled TLCD physical model represents the hardware component while the building dynamics are reproduced using a numerical model based on a modal approach. Thanks to the Politecnico di Milano wind tunnel, wind forces acting on the building were calculated from the pressure distributions measured on a scale model. In addition, in the first part of the paper, a new method for evaluating the dissipating characteristics of a TLCD based on an energy approach is presented. This new methodology allows direct linking of the TLCD to be directly linked to the increased damping acting on the structure, facilitating the preliminary design of these devices.

Electrical and Structural Properties of $LiNbO_3/Si$ Structure by RF Sputtering Method (RF 스퍼터링법을 이용한 $LiNbO_3/Si$구조의 전기적 및 구조적 특성)

  • Lee, Sang-Woo;Kim, Kwang-Ho;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.106-110
    • /
    • 1998
  • The $LiNbO_3$ thin films were prepared directly on Si(100) substrates by conventional RF magnetron spurttering system for nonvolatile memory applications. RTA(Rapid Thermal Annealing) treatment was performed for as-deposited films in an oxygen atmosphere at 600 $^{\circ}C$ for 60 s. The rapid thermal annealed films were changed to poly-crystalline ferroelectric nature from amorphous of as-deposition. The resistivity of the ferroelectric $LiNbO_3$ film was increased from a typical value of $1{\sim}2{\times}10^8{\Omega}{\cdot}cm$ before the annealing to about $1{\times}10^{13}{\Omega}{\cdot}cm$ at 500 kV/cm and reduced the interface state density of the $LiNbO_3/Si$ (100) interface to about $1{\times}10^{11}/cm^2{\cdot}eV$. Ferroelectric hysteresis measurements using a Sawyer-Tower circuit yielded remanent polarization ($P_r$) and coercive field ($E_c$) values of about 1.2 ${\mu}C/cm^2$ and 120 kV/cm, respectively.

  • PDF

Structure Dynamic Analysis of 6kW Class Vertical-Axis Wind Turbine with Tower (타워를 포함한 6kW급 수직축 풍력발전기 구조진동해석)

  • Kim, Dong-Hyun;Ryu, Gyeong-Joong;Kim, Yo-Han;Kim, Sung-Bok;Kim, Kwang-Won;Nam, Hyo-Woo;Lee, Myoung-Goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.663-670
    • /
    • 2011
  • In this study, the design and verification of 6kW class lift-type vertical-axis wind turbine (VAWT) has been conducted using advanced CAE technique based on computational fluid dynamics (CFD), finite element method (FEM), and computational structural dynamics (CSD). Designed aerodynamic performance of the VAWT model is tested using unsteady CFD method. Designed structural safety is also tested through the evaluation of maximum induced stress level and resonance characteristics using FEM and CSD methods. It is importantly shown that the effect of master eccentricity due to rotational inertia needs to be carefully considered to additionally investigate dynamic stress and deformation level of the designed VAWT system.

  • PDF

Model Test of a TLP Type of Floating Offshore Wind Turbine, Part II

  • Dam, Pham Thanh;Seo, Byoung-Cheon;Kim, Jae-Hun;Shin, Jae-Wan;Shin, Hyunkyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.38.2-38.2
    • /
    • 2011
  • A large number of offshore wind turbines with fixed foundations have been installed in water depths up to 30 meters supporting 3-5MW wind turbines. Some floating platform concepts of offshore wind turbines were designed to be suitable for deployment in water depths greater than 60 meters. However the optimal design of this system in water depth 50 meters remains unknown. In this paper, a 5-MW wind turbine located on a TLP type platform was suggested for installation in this water depth. It is moored by a taut mooring line. For controlling the wind turbine always be operated at the upwind direction, one yaw controlling was attached at the tower. To study motion characteristics of this platform, a model was built with a 1/128 scale ratio. The model test was carried out in various conditions, including waves, winds and rotating rotor effect in the Ocean Engineering Wide Tank of the University Of Ulsan (UOU). The characteristic motions of the TLP platform were captured and the effective RAOs were obtained.

  • PDF

A Research on the Application of Single Point Ground for Intercom of T-50 Advanced Trainer (T-50 항공기 인터컴시스템 일점접지 적용에 관한 연구)

  • Seok, Min Joon;Nam, Yong Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.773-778
    • /
    • 2014
  • Aircraft communication system which provides internal communications between pilots in an aircraft and external communications between pilots and operators in ground tower with them. It is very important equipment in terms of mission and safety. It wouldn't meet performance requirements with only functions of transmission and receiving of signals. It should provide highly clear voice quality without any noise. This paper analyzes the cause of noise during internal communications and summarizes the design changes applying single point ground concept to solve the problem. It also describes the results of fight test to verify the design changes.

Production of Precast Concrete using Eco-friendly Lightweight Concrete (친환경 경량콘크리트를 이용한 프리캐스트 콘크리트 제작)

  • Lee, Soo-Hyung;Lee, Han-Baek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.179-180
    • /
    • 2016
  • This study has a purpose of producing precast concrete for rapid construction of urban railway system. However, previous precast concrete has problem of its weight itself and there has been a keen interest in effect of carbon emission reduction and eco-friendly in our society. Therefore, in order to solve these two problems, we are about to produce precast concrete using lightweight aggregate and eco-lightweight concrete, with which much mineral had been replaced. As a result, we could confirm that it was possible to produce RMC B/P production satisfying the requirement performance of eco-lightweight concrete, which is replaced with a great amount of mineral for reduction of precast concrete's weight and environmental performance. Also, by confirming the possibility of producing precast concrete which lightweight concrete is used, if producing precast concrete by using eco-lightweight concrete, it would be effective to avoid destruction of environment and much useful to use multiple tower crane when constructing. Afterward, we will proceed our study by constructing precast concrete at which eco-lightweight concrete is used for continuous quality improvement.

  • PDF

Analysis of Sun Tracking Error Caused by the Heliostat Driving Axis Geometrical Error Utilizing the Solar Ray Tracing Technique (태양광선 제적추적기법을 이용한 Heliostat 구동축 기구오차에서 기인하는 태양추적오차의 분석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.39-46
    • /
    • 2009
  • Heliostat, as a mirror system tracking the sun's movement, is the most important subsystem determining the efficiency of solar thermal power plant. Thus the accurate sun tracking performance under the various hazardous operating condition, is required. This study presents a methodology of development of the solar ray tracing technique and the application of it in the analysis of sun tracking error due to the heliostat geometrical errors. The geometrical errors considered here are the azimuth axis tilting error and the elevation axis tilting error. We first analyze the geometry of solar ray reflected from the heliostat. Then the point on the receiver, where the solar ray reflected from the heliostat is landed, is computed and compared with the original intended point, which represents the sun tracking error. The result obtained shows that the effect of geometrical error on the sun tracking performance is varying with time(season) and the heliostat location. It also shows that the heliostat located near the solar tower has larger sun tracking error than that of the heliostat located farther.

An Assessment Study for Design Load of a Small Wind Turbine (소형풍력발전기의 설계하중 평가 연구)

  • Hyun, Seung-Gun;Kim, Keon-Hoon;Huh, Jong-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.48-53
    • /
    • 2011
  • In this study, it is to verify the applicability for a simplified model(IEC61400-2, Design Require-ments for Small Wind Turbines, 2006-03) is the international standard is used to the structural design. In the design process of a wind turbine, the safety of a designed wind turbine is one of the most important factors. The simplified model can be used to determine the design load for small wind turbines. So, this paper has been re-evaluated a small wind turbine design loads that produced already. As a result, the material characteristic value(Rchar) of Blade, Rotor shaft and the tower are $90E6[N/m^2]$, $441E6[N/m^2]$ and $94E6[N/m^2]$. Therefore, the value of the applied safety factor to each part of the survival probability of 95% are satisfied.

  • PDF

Raffles City in Hangzhou China -The Engineering of a 'Vertical City' of Vibrant Waves-

  • Wang, Aaron J.
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.33-47
    • /
    • 2017
  • This mixed-use Raffles City (RCH) development is located near the Qiantang River in Hangzhou, the capital of Zhejiang province, located southwest of Shanghai, China. The project incorporates retail, offices, housing, and hotel facilities and marks the site of a cultural landscape within the Quianjiang New Town Area. The project is composed of two 250-meter-tall twisting towers with a form of vibrant waves, along with a commercial podium and three stories of basement car parking. It reaches a height of 60 stories, presenting views both to and from the Qiantang River and West Lake areas, with a total floor area of almost 400,000 square meters. A composite moment frame plus concrete core structural system was adopted for the tower structures. Concrete filled steel tubular (CFT) columns together with steel reinforced concrete (SRC) beams form the outer moment frame of the towers' structure. The internal slabs and floor beams are of reinforced concrete. This paper presents the engineering design and construction of this highly complex project. Through comprehensive discussion and careful elaboration, some conclusions are reached, which serve as a reference guide for the design and construction of similar free-form, hybrid, mix-use buildings.

A Study on the Design of a Floodlighting Tower with LED Source of Light Considering the Reduction of a Glare (눈부심 저감을 고려한 LED광원 계류장 조명탑 설계에 관한 연구)

  • Kim, Dong-Su;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.271-275
    • /
    • 2015
  • The floodlighting assists the pilot in taxiing the aircraft into and out of the final parking position and provide lighting suitable for passenger to embark and debark and for personnel to load and unload cargo. It is composed of sodium lamps which is consuming high energy. It needs to develop a dedicated LED lamp to replace the existing lamps. In this paper, We propose a suitable asymmetric angle of LED lamps to avoid a pilot's glare and to meet the standard illumination. For this, we analyze asymmetric angle of sodium lamps which are using in airport and confirm whether the illumination distribution and glare index meet the relating standards by using simulation method. Also, we study the needs of asymmetric characteristics of LED ramp by simulating the LED lamps with and without asymmetric characteristics of ramp respectively. With the simulation result, finally we propose the best asymmetric angle of LED lamp to meet the average illumination standard, and avoid a pilot's glare.