• Title/Summary/Keyword: toughness characterization

Search Result 74, Processing Time 0.028 seconds

Effects of Fiber Volume Fraction and Water/Cement Ratio on Toughness Development of Steel Fiber Reinforced Concrete

  • Lee, Chang Joon;Lange, David A.;Lee, Jae Yong;Shin, Sung Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Flexure toughness of Steel Fiber Reinforced Concrete (SFRC) shows a time-dependent characteristic due to the hydration process of the cement matrix in the SFRC system. The effect of two important factors, water/cement (w/c) ratio and fiber volume fraction, on the flexure toughness development of SFRC were investigated. Three different SFRC mixtures with hooked-end steel fibers were tested using a four-point bending testing configuration. Each mixture was tested at five different ages. The results showed that the post-peak toughness of SFRC developed at an earlier age than the first-crack toughness.

The Modification of Epoxy Resins with Liquid Rubbers (Liquid Rubber를 이용한 Epoxy Resin의 개질)

  • Choi, Sei-Young;Kim, Young-Jun;Yun, Ju-Ho
    • Elastomers and Composites
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 1996
  • In order to Improve the fracture toughness of epoxy resin system, liquid chloroprene rubber(LCR) and liquid butadiene rubber (LBR) which have hydroxy group were used in the brittle epoxy system. Mechanical and toughness characterization of the modified epoxy resins were investigated as a function of liquid rubbers content. Epoxy resins modified with both of the liquid rubbers showed complete phase-separation microstructure : In all of the LCR content, it was observed that the domain size of LCR dispersed in the epoxy matrix ranging from $2{\mu}m\;to\;5{\mu}m$. It was found that fracture toughness, $K_{ic}$, of the modified LCR system was enhanced continuously as increasing LCR content. However around 10phr of LBR system showed maximum fracture toughness. Specifically, when BPA add to the modified LCR system, thermal and mechanical properties increased than neat epoxy. At the same time, fracture toughness was enhanced.

  • PDF

Corelationship between Interfacial Fracture Toughness and Mechanical Properties of Concrete (계면파괴인성과 콘크리트 역학적 성질의 상관관계)

  • 이광명;안기석;이회근;김태근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.359-364
    • /
    • 1998
  • The interfacial zone in concrete materials is extensive, geometrically complex, and constitutes inherently weak zones that limit the concrete performance. Motar-aggregate interfaces play a major role in the fracture processing in concrete composites. Also, the interfacial bond considerably influence mechanical properties of concrete such as modulus of elasticity, strength, and fracture energy, Characterization of the interfacial properties is, therefore, essential to overcome the limitations associated with the interfaces. an objective of this paper is to investigate the corelationship between the fracture toughness of mortar-aggregate interface and the concrete properties such as strengths and elastic moduli. It is observed from the test results that interface fracture toughness is closely related with the compressive strength rather than other properties. At early ages, the development of both tensile strength and elastic modulus are much greater thatn that of both interface fracture toughness and compressive strength.

  • PDF

Characterization of Microstructures and Fracture Toughness of SR Specimen in Granitic Rocks (화강암에서 SR 시편의 파괴인성과 미세구조적인 특징)

  • Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.217-224
    • /
    • 2010
  • Three relatively homogeneous granitic rocks were studied to investigate the relationship between their microstructural properties and fracture toughness. Fracture toughness and ultrasonic velocity were varied with the orientation of mineral's long axis and microcrack, obtained from optical microscope. The lowest fracture toughness values are obtained, when the fracture propagates parallel to weakness planes which have the orientation of mineral's long axis and microcrack, in other words, when weakness planes develop perpendicular to the direction of tensile stress agrees with that of rift plane. The fracture toughness values, measured with the short rod method, varied from 1.63 to 2.62 MPa $m^{0.5}$, and their values are related with the average grain size and average microcrack length.

Characterization of the fracture toughness and fatigue crack propagation of reduced activation ferritic steel(RAFs) (저방사화 페라이트강(RAFs)의 파괴인성 및 피로균열진전 특성)

  • Kim, Dong-Hyun;Yoon, Han-Ki;Kim, Sa-Wong;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.13-18
    • /
    • 2004
  • The objective of this study is to investigate fracture toughness and fatigue crack propagation behavior in the Reduced Activation Ferritic Steel (RAFs) JLF-I. The fracture toughness tests were performed with various size(plane size and thickness) and various side groove of specimens. The fatigue crack propagation behavior of the JLF-I steel was investigated by the constant-amplitude loading test for the stress ratios R=O.I, 0.3 and 0.5 respectively. The effects of stress ratios and specimen size on the fatigue crack growth behaviors for JLF-I steel were discussed within the Paris law. The test results showed the standard CT specimen with the side groove of 40 % represented a valid fracture toughness. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. However, the fracture resistance curve of half size specimen was similar to that of the standard specimen. The fatigue crack propagation rate of a half size specimen was similar to that of a full size specimen at the stress ratios of 0.1, 0.3 and 0.5 respectively. The fatigue crack propagation behavior of this material were evaluated by using a half size specimen.

  • PDF

Mixed-mode fracture toughness measurement of a composite/metal interface (복합재료/금속 접착 계면의 혼합모드 파괴인성 측정)

  • Kim, Won-Seock;Jang, Chang-Jae;Lee, Jung-Ju
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • Interfacial fracture toughness under various mixed-mode loading is measured to provide a mixed-mode fracture criterion of a composite/metal bonded joint. Experimental fracture characterization tests were carried out using a SLB (single leg bending) specimen, which controls mode ratio with the specimen thickness. The experimental result of the SLB test conforms that interfacial fracture toughness increases as the mode II component increases. The effect of loading mode on interfacial crack growth is investigated on the basis of crack path observation using microscopic image acquisition technique. The influence of interfacial roughness on adhesion strength is also discussed.

The Effects of Physical Aging of PSF/AS4 Laminate on Fatigue (PSE/AS4 복합재료의 가속노화가 피로강도에 미치는 영향)

  • Kim, Hyung-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.39-44
    • /
    • 2005
  • The effects of aging of PSF/AS4 laminates on fatigue was studied using the new energy release rate analysis. The analysis by the variational mechanics has been useful in providing fracture mechanics interpretation of matrix microcracking in cross-ply laminates. This paper describes the changes of the critical energy release rate (microcracking toughness) according to the aging period under fatigue loading. The master plot by modified Paris-law gives a characterization of a material system's resistance to microcrack formation. PSF $[0/90_{s}]_{s}$ laminates were aged at four different temperature based on the glass transition temperature for 0 to 60 days. At all temperatures, the toughness decreased with aging time. The decrease of the toughness at higher temperature was faster than at lower temperature. To assess the effects of aging on fatigue, the unaged laminates were compared with the laminates which had been aged for 60 days at 170$^{\circ}C$ near 180 $^{\circ}C$ t$_g$. The slope of dD/dN versus ${\Delta}G_m$. of the aged laminates was lower than that of the unaged laminates. There was a significant shift of the aged data to formation of microcracks at the lower values of ${\Delta}G_m$.

  • PDF

Study on Mode I Fracture Toughness and FEM analysis of Carbon/Epoxy Laminates Using Acoustic Emission Signal (음향 방출 신호를 이용한 탄소/에폭시 적층판의 Mode I 파괴 인성 및 유한요소해석에 관한 연구)

  • Cho, Hyun-jun;Jeon, Min-Hyeok;No, Hae-Ri;Kim, In-Gul
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • Composite materials have been used in aerospace industry and many applications because of many advantages such as specific strength and stiffness and corrosion resistance etc. However, it is vulnerable to impacts, these impact lead to formation of cracks in composite laminate and failure of structures. In this paper, we analyzed Mode I fracture toughness of Carbon/Epoxy laminates using acoustic emission signal. DCB test was carried out to analyze Mode I failure characterization of Carbon/Epoxy laminates, and AE sensor was attached to measure AE signal induced by failure of specimen. Fracture toughness was calculated using cumulative AE energy and measured crack length using camera. The calculated fracture toughness was applied in FE model and the result of FE analysis compared with DCB test results. The results show good agreement with between FEM and DCB test results.

Interfacial Fracture Toughness Measurement of Composite/metal Bonding (복합재료/금속 접착 계면의 파괴인성치 측정)

  • Kim, Won-Seock;Lee, Jung-Ju
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.7-14
    • /
    • 2008
  • Prediction of the load-bearing capacity of an adhesive-bonded Joint is of practical importance for engineers. This paper introduces interface fracture mechanics approach to predict the load-bearing capacity of composite metal bonded joints. The adhesion strength of composite/steel bonding is evaluated in terms of the energy release rate of an interfacial crack and the fracture toughness of the interface. Virtual track closure technique (VCCT) is used to calculate energy release rates, and hi-material end-notched flexure (ENF) specimens are devised to measure the interfacial fracture toughness. Bi-material ENF specimens gave consistent mode II fracture toughness $(G_{IIc})$ values of the composite/steel interface regardless of the thickness of specimens. The critical energy release rates of double-lap joints showed a good agreement with the measured fracture toughness. Therefore. the energy-based interfacial fracture characterization can be a practical engineering tool for predicting the load-bearing capacity of bonded joints.