• Title/Summary/Keyword: touch paper

Search Result 670, Processing Time 0.029 seconds

Augmenting Interactivity of Touch Pad by Adding Isometric Rate Control

  • Heo, Seong-Kook;Hahn, Min-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.240-244
    • /
    • 2009
  • In this paper, we present FloatingPad, a touch pad based device with better scrolling feature and more interaction styles than a traditional touch pad. When we interact with a real object like a picture or a book, we manipulate on the object, and we also move, rotate, and flip the object. We applied this idea into a touch pad. In FloatingPad, the touch pad is not fixed to the device. It is floating on the device; it can be slid on the device. Therefore a user can have additional degree of freedom of input by shifting and rotating the touch pad while having the traditional touch pad input. By using this technique, the interactivity of the touch pad can be augmented, and better scrolling feature can be provided by reducing clutching occurs on the position scrolling devices by using the movement of the touch pad as rate control. We implemented the prototype device and conducted a user study with three applications developed for FloatingPad.

  • PDF

A Compact Low-Power Shunt Proximity Touch Sensor and Readout for Haptic Function

  • Lee, Yong-Min;Lee, Kye-Shin;Jeong, Taikyeong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.380-386
    • /
    • 2016
  • This paper presents a compact and low-power on-chip touch sensor and readout circuit using shunt proximity touch sensor and its design scheme. In the proposed touch sensor readout circuit, the touch panel condition depending on the proximity of the finger is directly converted into the corresponding voltage level without additional signal conditioning procedures. Furthermore, the additional circuitry including the comparator and the flip-flop does not consume any static current, which leads to a low-power design scheme. A new prototype touch sensor readout integrated circuit was fabricated using complementally metal oxide silicon (CMOS) $0.18{\mu}m$ technology with core area of $0.032mm^2$ and total current of $125{\mu}A$. Our measurement result shows that an actual 10.4 inches capacitive type touch screen panel (TSP) can detect the finger size from 0 to 1.52 mm, sharply.

Analyzing Input Patterns of Smartphone Applications in Touch Interfaces

  • Bahn, Hyokyung;Kim, Jisun
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.30-37
    • /
    • 2021
  • Touch sensor interface has become the most useful input device in a smartphone. Unlike keypad/keyboard interfaces used in electronic dictionaries and feature phones, smartphone's touch interfaces allow for the recognition of various gestures that represent distinct features of each application's input. In this paper, we analyze application-specific input patterns that appear in smartphone's touch interfaces. Specifically, we capture touch input patterns from various Android applications, and analyze them. Based on this analysis, we observe a certain unique characteristics of application's touch input patterns. This can be utilized in various useful areas like user authentications, prevention of executing application by illegal users, or digital forensic based on logged touch patterns.

Two-Point Touch Enabled 3D Touch Pad (2개의 터치인식이 가능한 3D 터치패드)

  • Lee, Yong-Min;Han, Chang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.578-583
    • /
    • 2017
  • This paper presents a 3D touch pad technology that uses force touch sensors as a next-generation method for mobile applications. 3D touch technology requires detecting the location and pressure of touches simultaneously, as well as multi-touch function. We used metal foil strain gauges for the touch recognition sensor and detected the weak touch signals using Wheatstone bridge circuit at each strain gauge sensor. We also developed a touch recognition system that amplifies touch signals, converts them to digital data through a microprocessor, and displays the data on a screen. In software, we designed a touch recognition algorithm with C code, which is capable of recognizing two-point touch and differentiating touch pressures. We carried out a successful experiment to display two touch signals on a screen with different forces and locations.

Multi-touch Recognition and Tracking for Self Capacitive TSP (자기정전용량 방식의 TSP에서 멀티터치 인식 및 추적)

  • Jung, Sung Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.136-140
    • /
    • 2014
  • This paper introduces a multi-touch recognition and tracking method for self capacitive TSP(Touch Screen Pannel). Self capacitive TSP recognizes finger touches by sensing capacitive change of ITO transparent conducting film arranged by rows and columns on the TSP pannel. They have some advantages such as high SNR, fast sensing, and simple touch processing, but have very difficulties for multi-touch processing. This disadvantage makes that the mutual capacitive TSPs, which have no such disadvantage, have been more widely used especially for multi-touch applications. However, since the other applications for remote control pad or recently developed wearable devises have only restrictive requirements for multi-touch, the disadvantage of self capacitive TSP is not a critical problem. In this paper, we first describe multi-touch recognition problems in self capacitive TSP and then propose how to overcome those problems and a tracking method of two touches when they are moving. Experimental results of our method showed that our algorithm works well in two touches.

An Implementation of Driving Circuit for Resistive Touch Panel (저항막식 터치 패널의 구동회로 제작)

  • Han, Hyung-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.1
    • /
    • pp.36-39
    • /
    • 2009
  • In this paper, we propose a 4-wire type driving circuit for resistive touch panel which was manufactured at the lab. The circuit is designed by using the touch panel controller ADS7846 and AVR microcontroller board. The test result shows that the designed circuit can give and transmit the position information of touch panel to the computer.

  • PDF

Implementation of new gestures on the Multi-touch table

  • Park, Sang Bong;Kim, Beom jin
    • International Journal of Advanced Culture Technology
    • /
    • v.1 no.1
    • /
    • pp.15-18
    • /
    • 2013
  • This paper describes new gestures on the Multi-touch table. The 2 new gestures with 3 fingers are used for minimizing of all windows that is already open and converting Aero mode. We also implement a FTIR (Frustrated Total Internal Reflection) Multi-touch table that consists of sheet of acrylic, infrared LEDs, camera and rear projector. The operation of proposed gestures is verified on the implemented Multi-touch table.

  • PDF

Touch Pen Using Depth Information

  • Lee, Dong-Seok;Kwon, Soon-Kak
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1313-1318
    • /
    • 2015
  • Current touch pen requires the special equipments to detect a touch and its price increases in proportion to the screen size. In this paper, we propose a method for detecting a touch and implementing a pen using the depth information. The proposed method obtains a background depth image using a depth camera and extracts an object by comparing a captured depth image with the background depth image. Also, we determine a touch if the depth value of the object is the same as the background and then provide the pen event. Using this method, we can implement a cheaper and more convenient touch pen.

An Implementation of High Speed Rendering to Process Touch Screen Multiple Inputs based on FPGA (FPGA 기반의 터치스크린 다중입력처리를 위한 고속 렌더링 구현)

  • Yoon, Junhan;Kim, Jin Heon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1803-1810
    • /
    • 2017
  • A large amount of processing time is required if the process of detecting the touch position on the touch screen and displaying it on the display panel is performed only by software. In this paper, we propose a method to output information touched on the screen using H/W method in order to improve the response speed delay. In the FPGA module designed for the HDMI signal output to the display module, the touch information is input to the serial data signal including touch coordinate information, point size, and color information. Then the module render the image using HDMI signal input to the module and the touch information. This method has a pipeline structure so it has effect of reducing the delay time that occurs in outputting the touch information compared with the conventional software processing method.

Input Device of Non-Touch Screen Using Vision (비전을 이용한 비접촉 스크린 입력장치)

  • Seo, Hyo-Dong;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1946-1950
    • /
    • 2011
  • This paper deals with an input device without the touch. The existing touch screens have some problems such as the week durability by frequent contact and the high cost by complex hardware configuration. In this paper, a non-touch input device is proposed to overcome these problems. The proposed method uses a skin color generated by the HCbCr color model and a hand region obtained by the labeling technique. In Addition, the skeleton model is employed to improve the recognition performance of the hand motion. Finally, the experiment results show the applicability of the proposed method.