• 제목/요약/키워드: totally complex submanifold

검색결과 12건 처리시간 0.015초

SURFACES IN 4-DIMENSIONAL SPHERE

  • Yamada, Akira
    • 대한수학회지
    • /
    • 제33권1호
    • /
    • pp.121-136
    • /
    • 1996
  • Met $\tilde{M} = (\tilde{M}, \tilde{J}, <>)$ be an almost Hermitian manifold and M a submanifold of $\tilde{M}$. According to the behavior of the tangent bundle TM with respect to the action of $\tilde{J}$, we have two typical classes of submanifolds. One of them is the class of almost complex submanifolds and another is the class of totally real submanifolds. In 1990, B. Y. Chen [4], [5] introduced the concept of the class of slant submanifolds which involve the above two classes. He used the Wirtinger angle to measure the behavior of TM with respect to the action of $\tilde{J}$.

  • PDF

HOLONOMY DISPLACEMENTS IN THE HOPF BUNDLES OVER $\mathcal{C}$Hn AND THE COMPLEX HEISENBERG GROUPS

  • Choi, Young-Gi;Lee, Kyung-Bai
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.733-743
    • /
    • 2012
  • For the "Hopf bundle" $S^1{\rightarrow}S^{2n,1}{\rightarrow}\mathbb{C}H^n$, horizontal lifts of simple closed curves are studied. Let ${\gamma}$ be a piecewise smooth, simple closed curve on a complete totally geodesic surface $S$ in the base space. Then the holonomy displacement along ${\gamma}$ is given by $$V({\gamma})=e^{{\lambda}A({\gamma})i}$$ where $A({\gamma})$ is the area of the region on the surface $S$ surrounded by ${\gamma}$; ${\lambda}=1/2$ or 0 depending on whether $S$ is a complex submanifold or not. We also carry out a similar investigation for the complex Heisenberg group $\mathbb{R}{\rightarrow}\mathcal{H}^{2n+1}{\rightarrow}\mathbb{C}^n$.